
In the world of statistical analyses, there are many tests and methods that for categorical data. Many become extremely complex, especially as the number of variables increases. But sometimes we need an analysis for only one or two categorical variables at a time. When that is the case, one of these seven fundamental tests may come in handy.
These tests apply to nominal data (categories with no order to them) and a few can apply to other types of data as well. They allow us to test for goodness of fit, independence, or homogeneity—and yes, we will discuss the difference! Whether these tests are new to you, or you need a good refresher, this training will help you understand how they work and when each is appropriate to use.
(more…)
Many of us love performing statistical analyses but hate writing them up in the Results section of the manuscript. We struggle with big-picture issues (What should I include? In what order?) as well as minutia (Do tables have to be double-spaced?). (more…)
You probably learned about the four levels of measurement in your very first statistics class: nominal, ordinal, interval, and ratio.
Knowing the level of measurement of a variable is crucial when working out how to analyze the variable. Failing to correctly match the statistical method to a variable’s level of measurement leads either to nonsense or to misleading results.
But the simple framework of the four levels is too simplistic in most real-world data analysis situations.
(more…)
There is a bit of art and experience to model building. You need to build a model to answer your research question but how do you build a statistical model when there are no instructions in the box?
Should you start with all your predictors or look at each one separately? Do you always take out non-significant variables and do you always leave in significant ones?
(more…)
Ratios are everywhere in statistics—coefficient of variation, hazard ratio, odds ratio, the list goes on. You see them reported in the literature and in your output.
You comment on them in your reports. You even (kinda) understand them. Or, maybe, not quite?
Please join Elaine Eisenbeisz as she presents an overview of the how and why of various ratios we use often in statistical practice.
(more…)