Share

by Jeff Meyer

As mentioned in a previous post, there is a significant difference between truncated and censored data.

Truncated data eliminates observations from an analysis based on a maximum and/or minimum value for a variable.

Censored data has limits on the maximum and/or minimum value for a variable but includes all observations in the analysis.

As a result, the models for analysis of these data are different. [click to continue…]

{ 0 comments }

Your Questions Answered from the Interpreting Regression Coefficients Webinar

Q16: The different reference group definitions (between R and SPSS) seem to give different significance values. Is that because they are testing different hypotheses? (e.g. “Is group 1 different from the reference group?”)

A: Yes. Because they’re using different reference groups, we have different hypothesis tests and therefore different p-values.

Read the full article →

November 2018 Member Webinar: Meta-analysis

Meta-analysis is the quantitative pooling of data from multiple studies. Meta-analysis done well has many strengths, including statistical power, precision in effect size estimates, and providing a summary of individual studies. But not all meta-analyses are done well.

Read the full article →

Should I Specify a Model Predictor as Categorical or Continuous?

Predictor variables in statistical models can be treated as either continuous or categorical.

Usually, this is a very straightforward decision about which way to specify each predictor.

Categorical predictors, like treatment group, marital status, or highest educational degree should be specified as categorical.

Likewise, continuous predictors, like age, systolic blood pressure, or percentage of ground cover should be specified as continuous.

But there are numerical predictors that aren’t continuous. And these can sometimes make sense to treat as continuous or sometimes make sense as categorical.

Read the full article →

Count vs. Continuous Variables: Differences Under the Hood

One of the most important concepts in data analysis is that the analysis needs to be appropriate for the scale of measurement of the variable. The focus of these decisions about scale tends to focus on levels of measurement: nominal, ordinal, interval, ratio.

These levels of measurement tell you about the amount of information in the variable. But there are other ways of distinguishing the scales that are also important and often overlooked.

Read the full article →

Differences in Model Building Between Explanatory and Predictive Models

Suppose you are asked to create a model that will predict who will drop out of a program your organization offers. You decide you will use a binary logistic regression because your outcome has two values: “0” for not dropping out and “1” for dropping out.

Most of us were trained in building models for the purpose of understanding and explaining the relationships between an outcome and a set of predictors. But model building works differently for purely predictive models. Where do we go from here?

Read the full article →

October 2018 Member Webinar: Latent Growth Curve Models

What statistical model would you use for longitudinal data to analyze between-subject differences with within-subject change?

Most analysts would respond, “a mixed model,” but have you ever heard of latent growth curves? How about latent trajectories, latent curves, growth curves, or time paths, which are other names for the same approach?

Read the full article →

The Difference Between Link Functions and Data Transformations

Generalized linear models—and generalized linear mixed models—are called generalized linear because they connect a model’s outcome to its predictors in a linear way. The function used to make this connection is called a link function. Link functions sounds like an exotic term, but they’re actually much simpler than they sound.

Read the full article →

The Four Stages of Mastering Statistical Analysis

Like any applied skill, mastering statistical analysis requires:

1. building a body of knowledge

2. adeptness of the tools of the trade (aka software package)

3. practice applying the knowledge and using the tools in a realistic, meaningful context.

Read the full article →

Understanding Random Effects in Mixed Models

In fixed-effects models (e.g., regression, ANOVA, generalized linear models), there is only one source of random variability. This source of variance is the random sample we take to measure our variables.

It may be patients in a health facility, for whom we take various measures of their medical history to estimate their probability of recovery. Or random variability may come from individual students in a school system, and we use demographic information to predict their grade point averages.

Read the full article →