Blog Posts

Previous Posts

From our first 2 Getting Started with Stata posts, you should be comfortable navigating the windows and menus of Stata. We can now get into the real meat of programming in Stata: do-files. Why Do-Files? A do-file is a Stata file that provides a list of commands to run. You can run an entire do-file […]

Do you ever wish your data analysis project were a little more organized?

Tell me if you can relate to this: You love your field of study, you enjoy asking the big questions and discovering answers. But, when it comes to data analysis and statistics you get a little bogged down. You might even feel a bit lost sometimes. And that is hard to admit. Because after all, […]

If you have run mixed models much at all, you have undoubtedly been haunted by some version of this very obtuse warning: “The Hessian (or G or D) Matrix is not positive definite. Convergence has stopped.” Or “The Model has not Converged. Parameter Estimates from the last iteration are displayed.” What on earth does that mean?

One of those tricky, but necessary, concepts in statistics is the difference between crossed and nested factors. As a reminder, a factor is any categorical independent variable. In experiments, or any randomized designs, these factors are often manipulated. Experimental manipulations (like Treatment vs. Control) are factors. Observational categorical predictors, such as gender, time point, poverty […]

In statistical practice, there are many situations where best practices are clear. There are many, though, where they aren’t. The granddaddy of these practices is adjusting p-values when you make multiple comparisons. There are good reasons to do it and good reasons not to. It depends on the situation. At the heart of the issue […]

There are not a lot of statistical methods designed just to analyze ordinal variables. But that doesn’t mean that you’re stuck with few options.  There are more than you’d think. Some are better than others, but it depends on the situation and research questions. Here are five options when your dependent variable is ordinal.

In many repeated measures data situations, you will need to set up the data different ways for different parts of the analyses. This article will outline one of the issues in data set up: using the long vs. the wide data format.

Interactions in statistical models are never especially easy to interpret. Throw in non-normal outcome variables and non-linear prediction functions and they become even more difficult to understand.

<< Older Entries

stat skill-building compass

Find clarity on your statistics journey. Try the new tool Stat Skill-Building Compass: Find Your Starting Point!