• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • our programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • statistical resources
  • blog
  • about
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • contact
  • login

linear regression

Member Training: The Link Between ANOVA and Regression

by TAF Support  Leave a Comment

Stage 2If you’ve used much analysis of variance (ANOVA), you’ve probably heard that ANOVA is a special case of linear regression. Unless you’ve seen why, though, that may not make a lot of sense. After all, ANOVA compares means between categories, while regression predicts outcomes with numeric variables.ANOVA chart [Read more…] about Member Training: The Link Between ANOVA and Regression

Tagged With: ANOVA, linear model, linear regression

Related Posts

  • Member Training: Centering
  • Member Training: Using Excel to Graph Predicted Values from Regression Models
  • Member Training: Hierarchical Regressions
  • Member Training: Statistical Contrasts

Can Likert Scale Data ever be Continuous?

by Karen Grace-Martin  51 Comments

A very common question is whether it is legitimate to use Likert scale data in parametric statistical procedures that require interval data, such as Linear Regression, ANOVA, and Factor Analysis.

A typical Likert scale item has 5 to 11 points that indicate the degree of something. For example, it could measure agreement with a statement, such as 1=Strongly Disagree to 5=Strongly Agree. It can be a 1 to 5 scale, 0 to 10, etc. [Read more…] about Can Likert Scale Data ever be Continuous?

Tagged With: ANOVA, continuous variable, Factor Analysis, Likert Scale, linear regression, Model Assumptions, Nonparametric statistics

Related Posts

  • Beyond Median Splits: Meaningful Cut Points
  • Checking Assumptions in ANOVA and Linear Regression Models: The Distribution of Dependent Variables
  • Member Training: The Link Between ANOVA and Regression
  • Member Training: Centering

Member Training: Centering

by TAF Support  Leave a Comment

Stage 2Centering variables is common practice in some areas, and rarely seen in others. That being the case, it isn’t always clear what are the reasons for centering variables. CenteringIs it only a matter of preference, or does centering variables help with analysis and interpretation? [Read more…] about Member Training: Centering

Tagged With: ANOVA, centering, linear regression

Related Posts

  • Member Training: The Link Between ANOVA and Regression
  • Member Training: Using Excel to Graph Predicted Values from Regression Models
  • Member Training: Hierarchical Regressions
  • Member Training: Statistical Contrasts

The Difference Between R-squared and Adjusted R-squared

by Karen Grace-Martin  4 Comments

When is it important to use adjusted R-squared instead of R-squared?

R², the the Coefficient of Determination, is one of the most useful and intuitive statistics we have in linear regression.Stage 2

It tells you how well the model predicts the outcome and has some nice properties. But it also has one big drawback.

[Read more…] about The Difference Between R-squared and Adjusted R-squared

Tagged With: Adjusted R-squared, Coefficient of determination, linear regression, Multiple Regression, R-squared

Related Posts

  • Confusing Statistical Term #9: Multiple Regression Model and Multivariate Regression Model
  • Member Training: Preparing to Use (and Interpret) a Linear Regression Model
  • What is Multicollinearity? A Visual Description
  • Member Training: The Link Between ANOVA and Regression

Interpreting Regression Coefficients

by Karen Grace-Martin  31 Comments

Updated 12/20/2021

Despite its popularity, interpreting regression coefficients of any but the simplest models is sometimes, well….difficult.

So let’s interpret the coefficients in a model with two predictors: a continuous and a categorical variable.  The example here is a linear regression model. But this works the same way for interpreting coefficients from any regression model without interactions.

A linear regression model with two predictor variables results in the following equation:

Yi = B0 + B1*X1i + B2*X2i + ei.

The variables in the model are:

  • Y, the response variable;
  • X1, the first predictor variable;
  • X2, the second predictor variable; and
  • e, the residual error, which is an unmeasured variable.

The parameters in the model are:

  • B0, the Y-intercept;
  • B1, the first regression coefficient; and
  • B2, the second regression coefficient.

One example would be a model of the height of a shrub (Y) based on the amount of bacteria in the soil (X1) and whether the plant is located in partial or full sun (X2).

Height is measured in cm. Bacteria is measured in thousand per ml of soil.  And type of sun = 0 if the plant is in partial sun and type of sun = 1 if the plant is in full sun.

Let’s say it turned out that the regression equation was estimated as follows:

Y = 42 + 2.3*X1 + 11*X2

Interpreting the Intercept

B0, the Y-intercept, can be interpreted as the value you would predict for Y if both X1 = 0 and X2 = 0.

We would expect an average height of 42 cm for shrubs in partial sun with no bacteria in the soil. However, this is only a meaningful interpretation if it is reasonable that both X1 and X2 can be 0, and if the data set actually included values for X1 and X2 that were near 0.

If neither of these conditions are true, then B0 really has no meaningful interpretation. It just anchors the regression line in the right place. In our case, it is easy to see that X2 sometimes is 0, but if X1, our bacteria level, never comes close to 0, then our intercept has no real interpretation.

Interpreting Coefficients of Continuous Predictor Variables

Since X1 is a continuous variable, B1 represents the difference in the predicted value of Y for each one-unit difference in X1, if X2 remains constant.

This means that if X1 differed by one unit (and X2 did not differ) Y will differ by B1 units, on average.

In our example, shrubs with a 5000/ml bacteria count would, on average, be 2.3 cm taller than those with a 4000/ml bacteria count. They likewise would be about 2.3 cm taller than those with 3000/ml bacteria, as long as they were in the same type of sun.

(Don’t forget that since the measurement unit for bacteria count is 1000 per ml of soil, 1000 bacteria represent one unit of X1).

Interpreting Coefficients of Categorical Predictor Variables

Similarly, B2 is interpreted as the difference in the predicted value in Y for each one-unit difference in X2 if X1 remains constant. However, since X2 is a categorical variable coded as 0 or 1, a one unit difference represents switching from one category to the other.

B2 is then the average difference in Y between the category for which X2 = 0 (the reference group) and the category for which X2 = 1 (the comparison group).

So compared to shrubs that were in partial sun, we would expect shrubs in full sun to be 11 cm taller, on average, at the same level of soil bacteria.

Interpreting Coefficients when Predictor Variables are Correlated

Don’t forget that each coefficient is influenced by the other variables in a regression model. Because predictor variables are nearly always associated, two or more variables may explain some of the same variation in Y.

Therefore, each coefficient does not measure the total effect on Y of its corresponding variable. It would if it were the only predictor variable in the model. Or if the predictors were independent of each other.

Rather, each coefficient represents the additional effect of adding that variable to the model, if the effects of all other variables in the model are already accounted for.

This means that adding or removing variables from the model will change the coefficients. This is not a problem, as long as you understand why and interpret accordingly.

Interpreting Other Specific Coefficients

I’ve given you the basics here. But interpretation gets a bit trickier for more complicated models, for example, when the model contains quadratic or interaction terms. There are also ways to rescale predictor variables to make interpretation easier.

So here is some more reading about interpreting specific types of coefficients for different types of models:

  • Interpreting the Intercept
  • Removing the Intercept when X is Continuous or Categorical
  • Interpreting Interactions in Regression
  • How Changing the Scale of X affects Interpreting its Regression Coefficient
  • Interpreting Coefficients with a Centered Predictor

Tagged With: categorical predictor, continuous predictor, Intercept, interpreting regression coefficients, linear regression

Related Posts

  • Centering a Covariate to Improve Interpretability
  • Using Marginal Means to Explain an Interaction to a Non-Statistical Audience
  • Member Training: Segmented Regression
  • Should You Always Center a Predictor on the Mean?

Overfitting in Regression Models

by Karen Grace-Martin  1 Comment

The practice of choosing predictors for a regression model, called model building, is an area of real craft.Stage 2

There are many possible strategies and approaches and they all work well in some situations. Every one of them requires making a lot of decisions along the way. As you make decisions, one danger to look out for is overfitting—creating a model that is too complex for the the data. [Read more…] about Overfitting in Regression Models

Tagged With: linear regression, Linear Regression Model, Model Building, overfitting, regression model

Related Posts

  • Same Statistical Models, Different (and Confusing) Output Terms
  • What is Multicollinearity? A Visual Description
  • Differences in Model Building Between Explanatory and Predictive Models
  • Member Training: The Link Between ANOVA and Regression

  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Interim pages omitted …
  • Go to page 10
  • Go to Next Page »

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: The Link Between ANOVA and Regression

Upcoming Workshops

    No Events

Upcoming Free Webinars

TBA

Quick links

Our Programs Statistical Resources Blog/News About Contact Log in

Contact

Upcoming

Free Webinars Membership Trainings Workshops

Privacy Policy

Search

Copyright © 2008–2023 The Analysis Factor, LLC.
All rights reserved.

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT