• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • Our Programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • About
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • Statistical Resources
  • Contact
  • Blog
  • Login

Member Training: A Gentle Introduction to Multilevel Models

by guest contributer

In this Stat’s Amore Training, Marc Diener will help you make sense of the strange terms and symbols that you find in studies that use multilevel modeling (MLM). You’ll learn about the basic ideas behind MLM, different MLM models, and a close look at one particular model, known as the random intercept model. A running example will be used to clarify the ideas and the meaning of the MLM results.

Do the words “multilevel modeling” strike fear into your heart? Sure, they sound fancy, but they don’t have to be so scary. Journal editors are increasingly asking researchers to analyze their data using this particular approach, and for good reason.

In the real world in which researchers work, data are often “nested.” A classic example is when an investigator collects data on individual students, and these individual students attend different schools. If you use classical data analysis methods, you could end up lumping the data across the different schools. By doing this, you lose two important abilities. First, you can’t look at whether the school that students attend helps account for important associations between your variables. Second, you will understate the real variance, leading to biased standard errors and p-values.

Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

Not a Member? Join!

About the Instructor

Marc Diener, PhD, maintains an independent clinical and research/statistics consulting practice and is an Associate Professor in the Clinical Psychology Doctoral Program at Long Island University—Post. In his practice, he provides psychological testing; individual psychotherapy; and clinical, research, and statistics consultation. He has published widely, including peer-reviewed journal articles and book chapters. He serves as a consulting editor for several journals, and his professional presentations include peer-reviewed and invited talks. He earned his doctorate in clinical psychology from Adelphi University and trained at Bellevue Hospital and St. Luke’s Roosevelt Hospital Center. He completed a postdoctoral fellowship at The Addiction Institute of New York/St. Luke’s Roosevelt Hospital Center. Prior to Long Island University—Post, he was a faculty member at the American School of Professional Psychology, Washington, DC. He is a Fellow in the Division of Independent Practice of the American Psychological Association.

Not a Member Yet?

It’s never too early to set yourself up for successful analysis with support and training from expert statisticians. Just head over and sign up for Statistically Speaking. You'll get access to this training webinar, 100+ other stats trainings, a pathway to work through the trainings that you need — plus the expert guidance you need to build statistical skill with live Q&A sessions and an ask-a-mentor forum.

Tagged With: multilevel model, nested

Related Posts

  • Member Training: A Gentle Introduction To Random Slopes In Multilevel Models
  • Member Training: Matrix Algebra for Data Analysts: A Primer
  • Member Training: Elements of Experimental Design
  • Member Training: Latent Growth Curve Models

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Analyzing Pre-Post Data

Upcoming Free Webinars

Poisson and Negative Binomial Regression Models for Count Data

Upcoming Workshops

  • Analyzing Count Data: Poisson, Negative Binomial, and Other Essential Models (Jul 2022)
  • Introduction to Generalized Linear Mixed Models (Jul 2022)

Copyright © 2008–2022 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT