• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • Our Programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • About
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • Statistical Resources
  • Contact
  • Blog
  • Login

Correlated Predictors

Eight Ways to Detect Multicollinearity

by Karen Grace-Martin 5 Comments

Multicollinearity can affect any regression model with more than one predictor. It occurs when two or more predictor variables overlap so much in what they measure that their effects are indistinguishable.

When the model tries to estimate their unique effects, it goes wonky (yes, that’s a technical term).

So for example, you may be interested in understanding the separate effects of altitude and temperature on the growth of a certain species of mountain tree.

[Read more…] about Eight Ways to Detect Multicollinearity

Tagged With: Bivariate Statistics, Correlated Predictors, linear regression, logistic regression, Multicollinearity, p-value, predictor variable, regression models

Related Posts

  • A Visual Description of Multicollinearity
  • Steps to Take When Your Regression (or Other Statistical) Results Just Look…Wrong
  • Is Multicollinearity the Bogeyman?
  • The Impact of Removing the Constant from a Regression Model: The Categorical Case

What Is Latent Class Analysis?

by Karen Grace-Martin 9 Comments

One of the most common—and one of the trickiest—challenges in data analysis is deciding how to include multiple predictors in a model, especially when they’re related to each other.

Here’s an example. Let’s say you are interested in studying the relationship between work spillover into personal time as a predictor of job burnout.

You have 5 categorical yes/no variables that indicate whether a particular symptom of work spillover is present (see below).

While you could use each individual variable, you’re not really interested if one in particular is related to the outcome. Perhaps it’s not really each symptom that’s important, but the idea that spillover is happening.

[Read more…] about What Is Latent Class Analysis?

Tagged With: categorical variable, conditional probability, Correlated Predictors, inclusion probability, latent class analysis, latent variable

Related Posts

  • One of the Many Advantages to Running Confirmatory Factor Analysis with a Structural Equation Model
  • First Steps in Structural Equation Modeling: Confirmatory Factor Analysis
  • Member Training: Latent Class Analysis
  • When Linear Models Don’t Fit Your Data, Now What?

Is Multicollinearity the Bogeyman?

by Karen Grace-Martin Leave a Comment

Multicollinearity occurs when two or more predictor variables in a regression model are redundant.  It is a real problem, and it can do terrible things to your results.  However, the dangers of multicollinearity seem to have been so drummed into students’ minds that it created a panic.

True multicolllinearity (the kind that messes things up) is pretty uncommon.  High correlations among predictor variables may indicate multicollinearity, but it is NOT a reliable indicator that it exists.  It does not necessarily indicate a problem.  How high is too high depends on [Read more…] about Is Multicollinearity the Bogeyman?

Tagged With: Correlated Predictors, Multicollinearity, regression models

Related Posts

  • Eight Ways to Detect Multicollinearity
  • A Visual Description of Multicollinearity
  • 7 Practical Guidelines for Accurate Statistical Model Building
  • Likert Scale Items as Predictor Variables in Regression

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Analyzing Pre-Post Data

Upcoming Free Webinars

Poisson and Negative Binomial Regression Models for Count Data

Upcoming Workshops

  • Analyzing Count Data: Poisson, Negative Binomial, and Other Essential Models (Jul 2022)
  • Introduction to Generalized Linear Mixed Models (Jul 2022)

Copyright © 2008–2022 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT