Outliers are one of those realities of data analysis that no one can avoid.
Those pesky extreme values cause biased parameter estimates, non-normality in otherwise beautifully normal variables, and inflated variances.
Everyone agrees that outliers cause trouble with parametric analyses. But not everyone agrees that they’re always a problem, or what to do about them even if they are.
Ways to Deal With Outliers
Sometimes a non-parametric or robust alternative is available.
And sometimes not.
There are a number of approaches in statistical analysis for dealing with outliers and the problems they create.
It’s common for committee members or Reviewer #2 to have Very. Strong. Opinions. that there is one and only one good approach.
Two approaches that I’ve commonly seen are:
1) delete outliers from the sample, or
2) winsorize them (i.e., replace the outlier value with one that is less extreme).
Limitations of these Solutions
The problem with both of these “solutions” is that they also cause problems — biased parameter estimates and underweighted or eliminated valid values. (more…)