In addition to the five listed in this title, there are quite a few other options, so how do you choose which statistical software to use?
The default is to use whatever software they used in your statistics class–at least you know the basics.
And this might turn out pretty well, but chances are it will fail you at some point. Many times the stat package used in a class is chosen for its shallow learning curve, (more…)
If your graduate statistical training was anything like mine, you learned ANOVA in one class and Linear Regression in another. My professors would often say things like “ANOVA is just a special case of Regression,” but give vague answers when pressed.
It was not until I started consulting that I realized how closely related ANOVA and regression are. They’re not only related, they’re the same thing. Not a quarter and a nickel–different sides of the same coin.
So here is a very simple example that shows why. When someone showed me this, a light bulb went on, even though I already knew both ANOVA and multiple linear (more…)
There are 4 questions you must answer to choose an appropriate statistical analysis.
1. What is your Research Question?
2. What is the scale of measurement of the variables used to answer the research question?
3. What is the Design? (between subjects, within subjects, etc.)
4. Are there any data issues? (missing, censored, truncated, etc.)
If you have not already, read about these in more detail.
(more…)
In a Regression model, should you drop interaction terms if they’re not significant?
In an ANOVA, adding interaction terms still leaves the main effects as main effects. That is, as long as the data are balanced, the main effects and the interactions are independent. The main effect is still telling (more…)
A Linear Regression Model with an interaction between two predictors (X1 and X2) has the form: 
Y = B0 + B1X1 + B2X2 + B3X1*X2.
It doesn’t really matter if X1 and X2 are categorical or continuous, but let’s assume they are continuous for simplicity.
One important concept is that B1 and B2 are not main effects, the way they would be if (more…)
I just came across this great article by Frank Harrell: Problems Caused by Categorizing Continuous Variables
It’s from the Vanderbilt University biostatistics department, so the examples are all medical, but the points hold for any field.
It goes right along with my recent post, Continuous and Categorical Variables: The Trouble with Median Splits.