• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • Our Programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • About
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • Statistical Resources
  • Contact
  • Blog
  • Login

analysis of variance

When Unequal Sample Sizes Are and Are NOT a Problem in ANOVA

by Karen Grace-Martin 224 Comments

In your statistics class, your professor made a big deal about unequal sample sizes in one-way Analysis of Variance (ANOVA) for two reasons.

1. Because she was making you calculate everything by hand.  Sums of squares require a different formula* if sample sizes are unequal, but statistical software will automatically use the right formula. So we’re not too concerned. We’re definitely using software.

2. Nice properties in ANOVA such as the Grand Mean being the intercept in an effect-coded regression model don’t hold when data are unbalanced.  Instead of the grand mean, you need to use a weighted mean.  That’s not a big deal if you’re aware of it. [Read more…] about When Unequal Sample Sizes Are and Are NOT a Problem in ANOVA

Tagged With: analysis of variance, ANOVA, SPSS, Unequal sample sizes

Related Posts

  • Same Statistical Models, Different (and Confusing) Output Terms
  • Why ANOVA and Linear Regression are the Same Analysis
  • 3 Reasons Psychology Researchers should Learn Regression
  • What are Sums of Squares?

Why ANOVA and Linear Regression are the Same Analysis

by Karen Grace-Martin 69 Comments

If your graduate statistical training was anything like mine, you learned ANOVA in one class and Linear Regression in another.  My professors would often say things like “ANOVA is just a special case of Regression,” but give vague answers when pressed.

It was not until I started consulting that I realized how closely related ANOVA and regression are.  They’re not only related, they’re the same thing.  Not a quarter and a nickel–different sides of the same coin.

So here is a very simple example that shows why.  When someone showed me this, a light bulb went on, even though I already knew both ANOVA and multiple linear [Read more…] about Why ANOVA and Linear Regression are the Same Analysis

Tagged With: analysis of covariance, analysis of variance, ancova, ANOVA, dummy coding, effect coding, linear regression

Related Posts

  • 3 Reasons Psychology Researchers should Learn Regression
  • SPSS GLM: Choosing Fixed Factors and Covariates
  • The General Linear Model, Analysis of Covariance, and How ANOVA and Linear Regression Really are the Same Model Wearing Different Clothes
  • Why ANOVA is Really a Linear Regression, Despite the Difference in Notation

3 Reasons Psychology Researchers should Learn Regression

by Karen Grace-Martin 1 Comment

Back when I was doing psychology research, I knew ANOVA pretty well.  I’d taken a number of courses on it and could run it backward and forward.  I kept hearing about ANCOVA, but in every ANOVA class that was the last topic on the syllabus, and we always ran out of time.

The other thing that drove me crazy was those stats professors kept saying “ANOVA is just a special case of Regression.”  I could not for the life of me figure out why or how.

It was only when I switched over to statistics that I finally took a regression class and figured out what ANOVA was all about. And only when I started consulting, and seeing hundreds of different ANOVA and regression models, that I finally made the connection.

But if you don’t have the driving curiosity about ANOVA and regression, why should you, as a researcher in Psychology, Education, or Agriculture, who is trained in ANOVA, want to learn regression?  There are 3 main reasons.

1. There a many, many continuous independent variables and covariates that need to be included in models.  Without the tools to analyze them as continuous, you are left forcing them into ANOVA using an arbitrary technique like median splits.  At best, you’re losing power.  At worst, you’re not publishing your article because you’re missing real effects.

2. Having a solid understanding of the General Linear Model in its various forms equips you to really understand your variables and their relationships.  It allows you to try a model different ways–not for data fishing, but for discovering the true nature of the relationships.  Having the capacity to add an interaction term or a squared term  allows you to listen to your data and makes you a better researcher.

3. The multiple linear regression model is the basis for many other statistical techniques–logistic regression, multilevel and mixed models, Poisson regression, Survival Analysis, and so on.  Each of these is a step (or small leap) beyond multiple regression.  If you’re still struggling with what it means to center variables or interpret interactions, learning one of these other techniques becomes arduous, if not painful.

Having guided thousands of researchers through their statistical analysis over the past 10 years, I am convinced that having a strong, intuitive understanding of the general linear model in its variety of forms is the key to being an effective and confident statistical analyst.  You are then free to learn and explore other methodologies as needed.

Tagged With: analysis of covariance, analysis of variance, ancova, ANOVA, continuous predictor, Covariate, General Linear Model, linear regression, Median Split

Related Posts

  • Why ANOVA and Linear Regression are the Same Analysis
  • The General Linear Model, Analysis of Covariance, and How ANOVA and Linear Regression Really are the Same Model Wearing Different Clothes
  • SPSS GLM: Choosing Fixed Factors and Covariates
  • 3 Situations when it makes sense to Categorize a Continuous Predictor in a Regression Model

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Analyzing Pre-Post Data

Upcoming Free Webinars

Poisson and Negative Binomial Regression Models for Count Data

Upcoming Workshops

  • Analyzing Count Data: Poisson, Negative Binomial, and Other Essential Models (Jul 2022)
  • Introduction to Generalized Linear Mixed Models (Jul 2022)

Copyright © 2008–2022 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT