• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • Our Programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • About
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • Statistical Resources
  • Contact
  • Blog
  • Login

Member Training: Practical Advice for Establishing Reliability and Validity

by guest contributer

How do you know your variables are measuring what you think they are? And how do you know they’re doing it well?

A key part of answering these questions is establishing reliability and validity of the measurements that you use in your research study. But the process of establishing reliability and validity is confusing. There are a dizzying number of choices available to you.

Here’s some practical advice. Reliability and validity are very important. In many research situations, checking and reporting them is central. But you can skip the effort entirely in some situations.

Furthermore, some approaches to reliability and validity only make sense for a composite measurement and can be safely skipped for an individual or univariate measurement.

This talk will outline the ways of establishing different types of reliability and validity. It will take you through the steps to follow in establishing reliability and validity with special emphasis on when you can safely skip some of these steps.

In this Stat’s Amore training, Statistically Speaking mentor Steve Simon will outline the ways of establishing different types of reliability and validity.

You learn the steps to follow in establishing reliability and validity with special emphasis on when you can safely skip some of these steps.

Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.
Not a Member? Join!

About the Instructor

Steve Simon works as an independent statistical consultant and as a part-time faculty member in the Department of Biomedical and Health Informatics at the University of Missouri-Kansas City. He has previously worked at Children’s Mercy Hospital, the National Institute for Occupational Safety and Health, and Bowling Green State University.

Steve has over 90 peer-reviewed publications, four of which have won major awards. He has written one book, Statistical Evidence in Medical Trials, and is the author of a major website about Statistics, Research Design, and Evidence Based Medicine, www.pmean.com. One of his current areas of interest is using Bayesian models to forecast patient accrual in clinical trials. Steve received a Ph.D. in Statistics from the University of Iowa in 1982.

Not a Member Yet?

It’s never too early to set yourself up for successful analysis with support and training from expert statisticians. Just head over and sign up for Statistically Speaking. You'll get access to this training webinar, 100+ other stats trainings, a pathway to work through the trainings that you need — plus the expert guidance you need to build statistical skill with live Q&A sessions and an ask-a-mentor forum.

Tagged With: composite measures, composite score, Criterion and construct validity, Information Criterion, inter rater reliability, internal consistency, internal structure, Literature Review, measurement, parallel forms, patient reported, reliability, researcher evaluations, test-retest reliability, validity

Related Posts

  • What Is Reliability and Why Does It Matter
  • Member Training: Statistical Contrasts
  • Member Training: Goodness of Fit Statistics
  • Member Training: Preparing to Use (and Interpret) a Linear Regression Model

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Analyzing Pre-Post Data

Upcoming Free Webinars

Poisson and Negative Binomial Regression Models for Count Data

Upcoming Workshops

  • Analyzing Count Data: Poisson, Negative Binomial, and Other Essential Models (Jul 2022)
  • Introduction to Generalized Linear Mixed Models (Jul 2022)

Copyright © 2008–2022 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT