Ratios are everywhere in statistics—coefficient of variation, hazard ratio, odds ratio, the list goes on. You see them reported in the literature and in your output.
You comment on them in your reports. You even (kinda) understand them. Or, maybe, not quite?
Please join Elaine Eisenbeisz as she presents an overview of the how and why of various ratios we use often in statistical practice.
(more…)
Meta-analysis is the quantitative pooling of data from multiple studies. Meta-analysis done well has many strengths, including statistical power,
precision in effect size estimates, and providing a summary of individual studies.
But not all meta-analyses are done well. The three threats to the validity of a meta-analytic finding are heterogeneity of study results, publication bias, and poor individual study quality.
(more…)
Most of us know that binary logistic regression is appropriate when the outcome variable has two possible outcomes: success and failure.
There are two more situations that are also appropriate for binary logistic regression, but they don’t always look like they should be.
(more…)