• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • About
    • Our Programs
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Guest Instructors
  • Membership
    • Statistically Speaking Membership Program
    • Login
  • Workshops
    • Online Workshops
    • Login
  • Consulting
    • Statistical Consulting Services
    • Login
  • Free Webinars
  • Contact
  • Login

Member Training: Model Fit Statistics in Structural Equation Modeling

by Karen Grace-Martin Leave a Comment

Structural Equation Modelling (SEM) increasingly is a ‘must’ for researchers in the social sciences and business analytics. However, the issue of how consistent the theoretical model is with the data, known as model fit, is by no means agreed upon: There is an abundance of fit indices available – and wide disparity in agreement on which indices to report and what the cut-offs for various indices actually are.

Assessing whether a specified model ‘fits’ the data is one of the most important steps in structural equation modelling, so it’s essential that researchers are comfortable using this technique.

New and improved indices that reflect some facet of model fit previously unaccounted for can entice a researcher to select those that indicate good model fit. But this is a risky practice that should be avoided, as it masks underlying problems that suggest possible misspecifications within the model.

In this webinar, we’ll review:

  • A variety of fit indices to be used as a guideline to help you avoid errors
  • The most widely respected and reported fit indices, including their interpretive value in assessing model fit and their availability in software packages such as SPSS Amos, SAS, Stata, Mplus, and the Lavaan Project in R
  • Best practices on reporting structural equation modelling

Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

Not a Member? Join!

About the Instructor

With more than fourteen years of experience as a data scientist, Christos Giannoulis has developed statistical analyses that convert data into insights. He strives to advance statistical analyses from correlation to causation analyses using Frequentist and Bayesian methods.

Christos has extensive experience with advanced exploratory, predictive, and prescriptive analyses using a combination of graphical user interface software (e.g., SPSS modeler, Jmp, Statistica, and Stata) as well as programming languages (e.g., R and Python) on desktop and cloud environments. He has authored and co-authored 5 reports, published more than 30 papers using statistical analysis, and presented at conferences in North America and Europe.

Not a Member Yet?

It’s never too early to set yourself up for successful analysis with support and training from expert statisticians. Just head over and sign up for Statistically Speaking. You'll get access to this training webinar and 85+ other stats trainings — plus the expert guidance you need to progress with live Q&A sessions and an ask-a-mentor forum.

Tagged With: indices, Model Fit, SEM, Structural Equation Modeling, theoretical model

Related Posts

  • One of the Many Advantages to Running Confirmatory Factor Analysis with a Structural Equation Model
  • Member Training: Reporting Structural Equation Modeling Results
  • Member Training: Latent Growth Curve Models
  • Member Training: A Guide to Latent Variable Models

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Please note that, due to the large number of comments submitted, any questions on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.

Primary Sidebar

Free Webinars

Effect Size Statistics on Tuesday, Feb 2nd

This Month’s Statistically Speaking Live Training

  • January Member Training: A Gentle Introduction To Random Slopes In Multilevel Models

Upcoming Workshops

  • Logistic Regression for Binary, Ordinal, and Multinomial Outcomes (May 2021)
  • Introduction to Generalized Linear Mixed Models (May 2021)

Read Our Book



Data Analysis with SPSS
(4th Edition)

by Stephen Sweet and
Karen Grace-Martin

Statistical Resources by Topic

  • Fundamental Statistics
  • Effect Size Statistics, Power, and Sample Size Calculations
  • Analysis of Variance and Covariance
  • Linear Regression
  • Complex Surveys & Sampling
  • Count Regression Models
  • Logistic Regression
  • Missing Data
  • Mixed and Multilevel Models
  • Principal Component Analysis and Factor Analysis
  • Structural Equation Modeling
  • Survival Analysis and Event History Analysis
  • Data Analysis Practice and Skills
  • R
  • SPSS
  • Stata

Copyright © 2008–2021 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.