September 2015 Member Webinar: Smoothing

by David Lillis

Smoothing can assist data analysis by highlighting important trends and revealing long term movements in time series that otherwise can be hard to see.

Many data smoothing techniques have been developed, each of which may be useful for particular kinds of data and in specific applications. David will give an introductory overview of the most common smoothing methods, and will show examples of their use. He will cover moving averages, exponential smoothing, the Kalman Filter, low-pass filters, high pass filters, LOWESS and smoothing splines.

This presentation is pitched towards those who may use smoothing techniques during the course of their analytic work, but who have little familiarity with the techniques themselves. David will avoid the underpinning mathematical and statistical methods, but instead will focus on providing a clear understanding of what each technique is about.

Note: This webinar is an exclusive benefit for members of the Statistically Speaking Membership Program.

About the Instructor

David LillisDavid Lillis is an applied statistician in Wellington, New Zealand.

His company, Sigma Statistics and Research Limited, provides online instruction, face-to-face workshops on R, and coding services in R.

David holds a doctorate in applied statistics and is a frequent contributor to The Analysis Factor, including our blog series R is Not So Hard.

Not a Member Yet?

It’s never too late to join the hottest stats club around.

Just head over to our enrollment page to sign up for Statistically Speaking.

You’ll get exclusive access to this month’s webinar live, weekly live Q&A sessions, a private stats forum, 60+ recordings of past webinars (including this one), and more.

Leave a Comment

Please note that, due to the large number of comments submitted, any comments on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.

Previous post:

Next post: