• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • Our Programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • About
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • Statistical Resources
  • Contact
  • Blog
  • Login

Member Training: Heterogeneity in Meta-analysis

by TAF Support

Meta-analysis allows us to synthesize the results of separate studies. The goal is to assess the mean effect size and also heterogeneity – how much the effect size varies across studies. 

The heterogeneity is a critically important element in any meta-analysis. If the effect size is consistent across studies, we can say that the treatment will have essentially the same effect in all comparable populations. On the other hand, if the effect size varies substantially across studies, it becomes important to quantify the extent of the variation.

The vast majority of published meta-analyses do not address heterogeneity in any meaningful way. Researchers typically report statistics such as the Q-value, p-value and I-squared. None of these tells us how much the effect size varies. Often researchers use the I-squared statistic to quantify heterogeneity as being low, moderate or high. While this practice is ubiquitous, it is nevertheless fundamentally incorrect.

In this training, we will present the prediction interval, which actually tells us how much the effect size varies. We can then use that information to properly understand the clinical or substantive utility of the intervention being studied.

In this training you will learn:

  • Why quantifying heterogeneity in a meta-analysis is important
  • How the prediction interval addresses heterogeneity and how the I-squared does not
  • How to report the results of a meta-analysis
  • Common mistakes related to heterogeneity, and how to avoid them

You should have a basic understanding of meta-analysis. If you need a review, please watch Meta-analysis before watching this training.

Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

Not a Member? Join!

About the Instructor

Michael BorensteinMichael Borenstein is the co-author (with Larry Hedges, Julian Higgins, and Hannah Rothstein) of the text Introduction to Meta-Analysis and the author of the text Common Mistakes in Meta-Analysis and How to Avoid Them. Dr. Borenstein previously served as Director of Biostatistics at Hillside Hospital, a Division of Long Island Jewish Medical Center in New York, and as Associate Professor at the Albert Einstein College of Medicine in New York. Beginning in 2000 Dr. Borenstein has worked exclusively in the field of meta-analysis. He has taught meta-analysis at the CDC, FDA, and NIH. He offers workshops in-person and online at www.Meta-Analysis-Workshops.com

Not a Member Yet?

It’s never too early to set yourself up for successful analysis with support and training from expert statisticians. Just head over and sign up for Statistically Speaking. You'll get access to this training webinar, 100+ other stats trainings, a pathway to work through the trainings that you need — plus the expert guidance you need to build statistical skill with live Q&A sessions and an ask-a-mentor forum.

Tagged With: effect size, heterogeneity, meta-analysis, prediction interval

Related Posts

  • Member Training: Meta-analysis
  • Member Training: Power Analysis and Sample Size Determination Using Simulation
  • Member Training: Statistical Rules of Thumb: Essential Practices or Urban Myths?
  • Member Training: Introduction to SPSS Software Tutorial

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Introduction to SPSS Software Tutorial

Upcoming Free Webinars

Poisson and Negative Binomial Regression Models for Count Data

Upcoming Workshops

  • Analyzing Count Data: Poisson, Negative Binomial, and Other Essential Models (Jul 2022)
  • Introduction to Generalized Linear Mixed Models (Jul 2022)

Copyright © 2008–2022 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT