• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • our programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • statistical resources
  • blog
  • about
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • contact
  • login

excel

The Secret to Importing Excel Spreadsheets into SAS

by Audrey Schnell  1 Comment

My poor colleague was pulling her hair out in frustration today.

You know when you’re trying to do something quickly, and it’s supposed to be easy, only it’s not? And you try every solution you can think of and it still doesn’t work?

And even in the great age of the Internet, which is supposed to know all the things you don’t, you still can’t find the answer anywhere?

Cue hair-pulling.

Here’s what happened: She was trying to import an Excel spreadsheet into SAS, and it didn’t work.

Instead she got:

[Read more…] about The Secret to Importing Excel Spreadsheets into SAS

Tagged With: excel, guessingrows, importing data, proc import, SAS

Related Posts

  • Multiple Imputation in a Nutshell
  • Statistical Software Access From Home
  • Member Training: What’s the Best Statistical Package for You?
  • Ten Ways Learning a Statistical Software Package is Like Learning a New Language

Member Training: Using Excel to Graph Predicted Values from Regression Models

by Karen Grace-Martin  1 Comment

Graphing predicted values from a regression model or means from an ANOVA makes interpretation of results much easier.

Every statistical software will graph predicted values for you. But the more complicated your model, the harder it can be to get the graph you want in the format you want.

Excel isn’t all that useful for estimating the statistics, but it has some very nice features that are useful for doing data analysis, one of which is graphing.

In this webinar, I will demonstrate how to calculate predicted means from a linear and a logistic regression model, then graph them. It will be particularly useful to you if you don’t have a very clear sense of where those predicted values come from.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

Not a Member? Join!

About the Instructor

Karen Grace-Martin helps statistics practitioners gain an intuitive understanding of how statistics is applied to real data in research studies.

She has guided and trained researchers through their statistical analysis for over 15 years as a statistical consultant at Cornell University and through The Analysis Factor. She has master’s degrees in both applied statistics and social psychology and is an expert in SPSS and SAS.

Not a Member Yet?
It’s never too early to set yourself up for successful analysis with support and training from expert statisticians. Just head over and sign up for Statistically Speaking.

You'll get access to this training webinar, 100+ other stats trainings, a pathway to work through the trainings that you need — plus the expert guidance you need to build statistical skill with live Q&A sessions and an ask-a-mentor forum.

Tagged With: ANOVA, excel, graphing, linear regression, logistic regression

Related Posts

  • Member Training: Hierarchical Regressions
  • Member Training: Types of Regression Models and When to Use Them
  • Member Training: The Link Between ANOVA and Regression
  • Member Training: Centering

On Data Integrity and Cleaning

by Karen Grace-Martin  2 Comments

This year I hired a Quickbooks consultant to bring my bookkeeping up from the stone age.  (I had been using Excel).

She had asked for some documents with detailed data, and I tried to send her something else as a shortcut.  I thought it was detailed enough. It wasn’t, so she just fudged it. The bottom line was all correct, but the data that put it together was all wrong.

I hit the roof. Internally, only—I realized it was my own fault for not giving her the info she needed.  She did a fabulous job.

But I could not leave the data fudged, even if it all added up to the right amount, and already reconciled. I had to go in and spend hours fixing it. Truthfully, I was a bit of a compulsive nut about it.

And then I had to ask myself why I was so uptight—if accountants think the details aren’t important, why do I? Statisticians are all about approximations and accountants are exact, right?

As it turns out, not so much.

But I realized I’ve had 20 years of training about the importance of data integrity. Sure, the results might be inexact, the analysis, the estimates, the conclusions. But not the data. The data must be clean.

Sparkling, if possible.

In research, it’s okay if the bottom line is an approximation.  Because we’re never really measuring the whole population.  And we can’t always measure precisely what we want to measure.  But in the long run, it all averages out.

But only if the measurements we do have are as accurate as they possibly can be.


Bookmark and Share

Tagged With: accuracy, data cleaning, excel, planning

Related Posts

  • Best Practices for Data Preparation
  • Eight Data Analysis Skills Every Analyst Needs
  • Preparing Data for Analysis is (more than) Half the Battle
  • Best Practices for Formatting Date Variables

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Moderated Mediation, Not Mediated Moderation

Upcoming Workshops

    No Events

Upcoming Free Webinars

TBA

Quick links

Our Programs Statistical Resources Blog/News About Contact Log in

Contact

Upcoming

Free Webinars Membership Trainings Workshops

Privacy Policy

Search

Copyright © 2008–2023 The Analysis Factor, LLC.
All rights reserved.

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT