• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • our programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • statistical resources
  • blog
  • about
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • contact
  • login

percentage data

When to Use Logistic Regression for Percentages and Counts

by Karen Grace-Martin  6 Comments

One important yet difficult skill in statistics is choosing a type model for different data situations. One key consideration is the dependent variable.

For linear models, the dependent variable doesn’t have to be normally distributed, but it does have to be continuous, unbounded, and measured on an interval or ratio scale.

Percentages don’t fit these criteria. Yes, they’re continuous and ratio scale. The issue is the [Read more…] about When to Use Logistic Regression for Percentages and Counts

Tagged With: binomial, Count data, count model, dependent variable, events, logistic regression, Negative Binomial Regression, percentage data, Poisson Regression, trials

Related Posts

  • When Linear Models Don’t Fit Your Data, Now What?
  • Member Training: Count Models
  • Proportions as Dependent Variable in Regression–Which Type of Model?
  • Poisson Regression Analysis for Count Data

Zero One Inflated Beta Models for Proportion Data

by Karen Grace-Martin  6 Comments

Proportion and percentage data are tricky to analyze.

Much like count data, they look like they should work in a linear model.

They’re numerical.  They’re often continuous.

And sometimes they do work.  Some proportion data do look normally distributed so estimates and p-values are reasonable.

But more often they don’t. So estimates and p-values are a mess.  Luckily, there are other options. [Read more…] about Zero One Inflated Beta Models for Proportion Data

Tagged With: beta regression, generalized linear models, mixture model, percentage data, proportion data, zero inflated poisson, zero-one-inflated beta

Related Posts

  • Count Models: Understanding the Log Link Function
  • Proportions as Dependent Variable in Regression–Which Type of Model?
  • Member Training: Multinomial Logistic Regression
  • Member Training: Centering

Proportions as Dependent Variable in Regression–Which Type of Model?

by Karen Grace-Martin  13 Comments

When the dependent variable in a regression model is a proportion or a percentage, it can be tricky to decide on the appropriate way to model it.

The big problem with ordinary linear regression is that the model can predict values that aren’t possible–values below 0 or above 1.  But the other problem is that the relationship isn’t linear–it’s sigmoidal.  A sigmoidal curve looks like a flattened S–linear in the middle, but flattened on the ends.  So now what?

The simplest approach is to do a linear regression anyway.  This approach can be justified only in a few situations.

1. All your data fall in the middle, linear section of the curve.  This generally translates to all your data being between .2 and .8 (although I’ve heard that between .3-.7 is better).  If this holds, you don’t have to worry about the two objections.  You do have a linear relationship, and you won’t get predicted values much beyond those values–certainly not beyond 0 or 1.

2. It is a really complicated model that would be much harder to model another way.  If you can assume a linear model, it will be much easier to do, say, a complicated mixed model or a structural equation model.  If it’s just a single multiple regression, however, you should look into one of the other methods.

A second approach is to treat the proportion as a binary response then run a logistic or probit regression.  This will only work if the proportion can be thought of and you have the data for the number of successes and the total number of trials.  For example, the proportion of land area covered with a certain species of plant would be hard to think of this way, but the proportion of correct answers on a 20-answer assessment would.

The third approach is to treat it the proportion as a censored continuous variable.  The censoring means that you don’t have information below 0 or above 1.  For example, perhaps the plant would spread even more if it hadn’t run out of land.  If you take this approach, you would run the model as a two-limit tobit model (Long, 1997).  This approach works best if there isn’t an excessive amount of censoring (values of 0 and 1).

Reference: Long, J.S. (1997). Regression Models for Categorical and Limited Dependent Variables. Sage Publishing.

Tagged With: dependent variable, linear regression, logistic regression, percentage data, Proportion, Tobit Regression

Related Posts

  • Member Training: Types of Regression Models and When to Use Them
  • When Linear Models Don’t Fit Your Data, Now What?
  • When to Use Logistic Regression for Percentages and Counts
  • Member Training: Using Excel to Graph Predicted Values from Regression Models

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Multinomial Logistic Regression

Upcoming Workshops

    No Events

Upcoming Free Webinars

TBA

Quick links

Our Programs Statistical Resources Blog/News About Contact Log in

Contact

Upcoming

Free Webinars Membership Trainings Workshops

Privacy Policy

Search

Copyright © 2008–2023 The Analysis Factor, LLC.
All rights reserved.

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT