• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • About
    • Our Programs
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Guest Instructors
  • Membership
    • Statistically Speaking Membership Program
    • Login
  • Workshops
    • Online Workshops
    • Login
  • Consulting
    • Statistical Consulting Services
    • Login
  • Free Webinars
  • Contact
  • Login

Confusing Statistical Term #4: Hierarchical Regression vs. Hierarchical Model

by Karen Grace-Martin 4 Comments

This one is relatively simple.  Very similar names for two totally different concepts.

Hierarchical Models (aka Hierarchical Linear Models or HLM) are a type of linear regression models in which the observations fall into hierarchical, or completely nested levels.

Hierarchical Models are a type of Multilevel Models.

So what is a hierarchical data structure, which requires a hierarchical model?

The classic example is data from children nested within schools.  The dependent variable could be something like math scores, and the predictors a whole host of things measured about the child and the school.

Child-level predictors could be things like GPA, grade, and gender. School-level predictors could be things like: total enrollment, private vs. public, mean SES.

Because multiple children are measured from the same school, their measurements are not independent.  Hierarchical modeling takes that into account.

Hierarchical regression is a model-building technique in any regression model. It is the practice of building successive linear regression models, each adding more predictors.

For example, one common practice is to start by adding only demographic control variables to the model.   In the next model, you can add predictors of interest, to see if they predict the DV above and beyond the effect of the controls.

You’re actually building separate but related models in each step.  But SPSS has a nice function where it will compare the models, and actually test if successive models fit better than previous ones.

So hierarchical regression is really a series of regular old OLS regression models–nothing fancy, really.

Confusing Statistical Terms #1: Independent Variable

Confusing Statistical Terms #2: Alpha and Beta

Confusing Statistical Terms #3: Levels

Four Critical Steps in Building Linear Regression Models
While you’re worrying about which predictors to enter, you might be missing issues that have a big impact your analysis. This training will help you achieve more accurate results and a less-frustrating model building experience.

Tagged With: hierarchical linear model, hierarchical regression, HLM

Related Posts

  • Confusing Statistical Term #9: Multiple Regression Model and Multivariate Regression Model
  • Same Statistical Models, Different (and Confusing) Output Terms
  • Confusing Statistical Terms #5: Covariate
  • Using Adjusted Means to Interpret Moderators in Analysis of Covariance

Reader Interactions

Comments

  1. Sophia says

    July 5, 2016 at 11:05 am

    Hi,
    how can I do hierarchical linear regressions with complex samples analysis?

    thank you,
    Sophia

    Reply
  2. Omar Faruk says

    May 24, 2016 at 9:47 am

    Nice topic….and very effective writings. Thanks for this nice post. It will be better if references be mentioned.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Please note that, due to the large number of comments submitted, any questions on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • February Member Training: Choosing the Best Statistical Analysis

Upcoming Workshops

  • Logistic Regression for Binary, Ordinal, and Multinomial Outcomes (May 2021)
  • Introduction to Generalized Linear Mixed Models (May 2021)

Read Our Book



Data Analysis with SPSS
(4th Edition)

by Stephen Sweet and
Karen Grace-Martin

Statistical Resources by Topic

  • Fundamental Statistics
  • Effect Size Statistics, Power, and Sample Size Calculations
  • Analysis of Variance and Covariance
  • Linear Regression
  • Complex Surveys & Sampling
  • Count Regression Models
  • Logistic Regression
  • Missing Data
  • Mixed and Multilevel Models
  • Principal Component Analysis and Factor Analysis
  • Structural Equation Modeling
  • Survival Analysis and Event History Analysis
  • Data Analysis Practice and Skills
  • R
  • SPSS
  • Stata

Copyright © 2008–2021 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.

SAVE & ACCEPT