• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • Our Programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • About
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • Statistical Resources
  • Contact
  • Blog
  • Login

How to Decide Between Multinomial and Ordinal Logistic Regression Models

by Karen Grace-Martin 9 Comments

A great tool to have in your statistical tool belt is logistic regression.

It comes in many varieties and many of us are familiar with the variety for binary outcomes.

But multinomial and ordinal varieties of logistic regression are also incredibly useful and worth knowing.

They can be tricky to decide between in practice, however.  In some — but not all — situations you could use either.

So let’s look at how they differ, when you might want to use one or the other, and how to decide.

The Basics

Both multinomial and ordinal models are used for categorical outcomes with more than two categories.

The simplest decision criterion is whether that outcome is nominal (i.e., no ordering to the categories) or ordinal (i.e., the categories have an order).

It should be that simple.

Here’s why it isn’t:

1. While there is only one logistic regression model appropriate for nominal outcomes, there are quite a few for ordinal outcomes.

These models account for the ordering of the outcome categories in different ways. Most software, however, offers you only one model for nominal and one for ordinal outcomes.

2. The most common of these models for ordinal outcomes is the proportional odds model. It has a strong assumption with two names — the proportional odds assumption or parallel lines assumption.

It essentially means that the predictors have the same effect on the odds of moving to a higher-order category everywhere along the scale.

The problem?

This assumption is rarely met in real data, yet is a requirement for the only ordinal model available in most software.

3. If you have a nominal outcome variable, it never makes sense to choose an ordinal model. Your results would be gibberish and you’ll be violating assumptions all over the place.

(That makes one choice simple!)

In contrast, you can run a nominal model for an ordinal variable and not violate any assumptions. But you may not be answering the research question you’re really interested in if it incorporates the ordering.

4. The names. Most software refers to a model for an ordinal variable as an ordinal logistic regression (which makes sense, but isn’t specific enough).

In contrast, they will call a model for a nominal variable a multinomial logistic regression (wait – what?).

It gets better.

Some software procedures require you to specify the distribution for the outcome and the link function, not the type of model you want to run for that outcome. Both ordinal and nominal variables, as it turns out, have multinomial distributions.

What differentiates them is the version of logit link function they use. So if you don’t specify that part correctly, you may not realize you’re actually running a model that assumes an ordinal outcome on a nominal outcome. Not good.

A link function with a name like “mlogit,” “multinomial logit,” or “generalized logit” assumes no ordering.

A link function with a name like “clogit” or “cumulative logit” assumes ordering, so only use this if your outcome really is ordinal.

Confusing, right?

To summarize:

If you have a nominal outcome, make sure you’re not running an ordinal model.​​​​​​​

​​​​​​​​​​​​​​If you have an ordinal outcome and the proportional odds assumption is met, you can run the cumulative logit version of ordinal logistic regression.

If you have an ordinal outcome and your proportional odds assumption isn’t met, you can​​​​​​​:

     1. Run a different ordinal model

     2. Run a nominal model as long as it still answers your research question
​​​​​​​

Binary, Ordinal, and Multinomial Logistic Regression for Categorical Outcomes
Get beyond the frustration of learning odds ratios, logit link functions, and proportional odds assumptions on your own. See the incredible usefulness of logistic regression and categorical data analysis in this one-hour training.

Tagged With: link function, logistic regression, logit, Multinomial Logistic Regression, Ordinal Logistic Regression

Related Posts

  • Logistic Regression Models for Multinomial and Ordinal Variables
  • Link Functions and Errors in Logistic Regression
  • Proportions as Dependent Variable in Regression–Which Type of Model?
  • Member Training: Explaining Logistic Regression Results to Non-Researchers

Reader Interactions

Comments

  1. Bobby Thapa says

    December 24, 2021 at 9:28 am

    Hi,

    When do we make dummy variables? Is it done only in multiple logistic regression or we have to make it in binary logistic regression also?

    Reply
    • Karen Grace-Martin says

      January 7, 2022 at 12:40 pm

      Whenever you have a categorical variable in a regression model, whether it’s a predictor or response variable, you need some sort of coding scheme for the categories. The 1/0 coding of the categories in binary logistic regression is dummy coding, yes.

      Reply
  2. george says

    April 20, 2020 at 3:06 pm

    Question?

    so I think my data fits the ordinal logistic regression due to nominal and ordinal data. My predictor variable is a construct (X) with is comprised of 3 subscales (x1+x2+x3= X) and is which to run the analysis based on “hierarchical/stepwise” theoretical regression framework.
    Should I run “3” independent regression analyses with each of the 3 subscales ( of my construct) or run just one analysis (“X” with 3 levels) and still use a hierarchical/stepwise , theoretical regression approach with ordinal log regression?

    Reply
    • Karen Grace-Martin says

      April 30, 2020 at 2:01 pm

      Hi George,

      That is actually not a simple question. There isn’t one right way. It depends on too many issues, including the exact research question you are asking. I would suggest this webinar for more info on how to approach a question like this: https://thecraftofstatisticalanalysis.com/cosa-description-page-four-key-questions/

      Reply
  3. Katrina Dunlap says

    November 2, 2019 at 11:40 am

    Hi there. This was very helpful. But let’s say that you have a variable with the following outcomes: Almost always, Most of the time, Some of the time, Rarely, Never, Don’t Know, and Refused. These 6 categories can be reduce to 4 however I am not sure if there is an order or not because “Don’t know” and “refused” is confusing to me. Thoughts?

    Reply
    • Shahzeb says

      March 21, 2020 at 1:05 am

      It always depends on the research questions you are trying to answer but apparently “Don’t Know” and “Refused” seem to have very different meanings. In case you might want to group them as “No information gained”, you would definitely be able to consider the groupings as ordinal.

      Reply
  4. Stephen says

    July 5, 2019 at 7:02 am

    Hi,
    Let’s say the outcome is three states: State 0, State 1 and State 2. How about a situation where the sample go through State 0, State 1 and 2 but can also go from State 0 to state 2 or State 2 to State 1? While you consider this as ordered or unordered?

    Reply
    • Karen Grace-Martin says

      August 22, 2019 at 1:29 pm

      Hi Stephen,
      This is an example where you have to decide if there really is an order. It can depend on exactly what it is you’re measuring about these states.

      Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Please note that, due to the large number of comments submitted, any questions on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Analyzing Pre-Post Data

Upcoming Free Webinars

Poisson and Negative Binomial Regression Models for Count Data

Upcoming Workshops

  • Analyzing Count Data: Poisson, Negative Binomial, and Other Essential Models (Jul 2022)
  • Introduction to Generalized Linear Mixed Models (Jul 2022)

Copyright © 2008–2022 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT