• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • About
    • Our Programs
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Guest Instructors
  • Membership
    • Statistically Speaking Membership Program
    • Login
  • Workshops
    • Online Workshops
    • Login
  • Consulting
    • Statistical Consulting Services
    • Login
  • Free Webinars
  • Contact
  • Login

categorical variable

Member Training: Explaining Logistic Regression Results to Non-Researchers

by TAF Support

Interpreting the results of logistic regression can be tricky, even for people who are familiar with performing different kinds of statistical analyses. How do we then share these results with non-researchers in a way that makes sense?

[Read more…] about Member Training: Explaining Logistic Regression Results to Non-Researchers

Tagged With: categorical variable, graphing, interaction, logistic regression, numeric variable

Related Posts

  • Member Training: Logistic Regression for Count and Proportion Data
  • Member Training: Using Excel to Graph Predicted Values from Regression Models
  • Member Training: Types of Regression Models and When to Use Them
  • How to Combine Complicated Models with Tricky Effects

Member Training: Seven Fundamental Tests for Categorical Data

by TAF Support

In the world of statistical analyses, there are many tests and methods that for categorical data. Many become extremely complex, especially as the number of variables increases. But sometimes we need an analysis for only one or two categorical variables at a time. When that is the case, one of these seven fundamental tests may come in handy.

These tests apply to nominal data (categories with no order to them) and a few can apply to other types of data as well. They allow us to test for goodness of fit, independence, or homogeneity—and yes, we will discuss the difference! Whether these tests are new to you, or you need a good refresher, this training will help you understand how they work and when each is appropriate to use.

[Read more…] about Member Training: Seven Fundamental Tests for Categorical Data

Tagged With: categorical outcome, categorical variable, chi-square test, cochran-mantel-haenszel, fisher exact test, goodness of fit, independence, mcnemar test, Z test

Related Posts

  • Chi-Square Test of Independence Rule of Thumb: n > 5
  • September Member Training: Inference and p-values and Statistical Significance, Oh My!
  • Effect Size Statistics: How to Calculate the Odds Ratio from a Chi-Square Cross-tabulation Table
  • Member Training: Explaining Logistic Regression Results to Non-Researchers

Five Ways to Analyze Ordinal Variables (Some Better than Others)

by Karen Grace-Martin 1 Comment

There are not a lot of statistical methods designed just for ordinal variables.

But that doesn’t mean that you’re stuck with few options.  There are more than you’d think.

Some are better than others, but it depends on the situation and research questions.

Here are five options when your dependent variable is ordinal.
[Read more…] about Five Ways to Analyze Ordinal Variables (Some Better than Others)

Tagged With: categorical variable, non-parametric, Ordinal Logistic Regression, rank-based test

Related Posts

  • When Dependent Variables Are Not Fit for Linear Models, Now What?
  • Member Training: Explaining Logistic Regression Results to Non-Researchers
  • How to Decide Between Multinomial and Ordinal Logistic Regression Models
  • Opposite Results in Ordinal Logistic Regression, Part 2

Linear Regression for an Outcome Variable with Boundaries

by Karen Grace-Martin 4 Comments

The following statement might surprise you, but it’s true.

To run a linear model, you don’t need an outcome variable Y that’s normally distributed. Instead, you need a dependent variable that is:

  • Continuous
  • Unbounded
  • Measured on an interval or ratio scale

The normality assumption is about the errors in the model, which have the same distribution as Y|X. It’s absolutely possible to have a skewed distribution of Y and a normal distribution of errors because of the effect of X. [Read more…] about Linear Regression for an Outcome Variable with Boundaries

Tagged With: bounded, categorical variable, ceiling effect, floor effect, linear regression, logistic regression, unbounded

Related Posts

  • Understanding Interactions Between Categorical and Continuous Variables in Linear Regression
  • Understanding Interaction Between Dummy Coded Categorical Variables in Linear Regression
  • A Visual Description of Multicollinearity
  • Using Marginal Means to Explain an Interaction to a Non-Statistical Audience

Understanding Interactions Between Categorical and Continuous Variables in Linear Regression

by Jeff Meyer 19 Comments

by Jeff Meyer, MPA, MBA

We’ve looked at the interaction effect between two categorical variables. Now let’s make things a little more interesting, shall we?

What if our predictors of interest, say, are a categorical and a continuous variable? How do we interpret the interaction between the two? [Read more…] about Understanding Interactions Between Categorical and Continuous Variables in Linear Regression

Tagged With: categorical variable, continuous variable, interaction, Interpreting Interactions, linear regression

Related Posts

  • Using Marginal Means to Explain an Interaction to a Non-Statistical Audience
  • Understanding Interaction Between Dummy Coded Categorical Variables in Linear Regression
  • Interpreting Lower Order Coefficients When the Model Contains an Interaction
  • When NOT to Center a Predictor Variable in Regression

What Is Latent Class Analysis?

by Karen Grace-Martin 9 Comments

One of the most common—and one of the trickiest—challenges in data analysis is deciding how to include multiple predictors in a model, especially when they’re related to each other.

Here’s an example. Let’s say you are interested in studying the relationship between work spillover into personal time as a predictor of job burnout.

You have 5 categorical yes/no variables that indicate whether a particular symptom of work spillover is present (see below).

While you could use each individual variable, you’re not really interested if one in particular is related to the outcome. Perhaps it’s not really each symptom that’s important, but the idea that spillover is happening.

[Read more…] about What Is Latent Class Analysis?

Tagged With: categorical variable, conditional probability, Correlated Predictors, inclusion probability, latent class analysis, latent variable

Related Posts

  • One of the Many Advantages to Running Confirmatory Factor Analysis with a Structural Equation Model
  • First Steps in Structural Equation Modeling: Confirmatory Factor Analysis
  • Member Training: A Guide to Latent Variable Models
  • Member Training: Reporting Structural Equation Modeling Results

  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Go to Next Page »

Primary Sidebar

Free Webinars

Effect Size Statistics on Tuesday, Feb 2nd

This Month’s Statistically Speaking Live Training

  • January Member Training: A Gentle Introduction To Random Slopes In Multilevel Models

Upcoming Workshops

  • Logistic Regression for Binary, Ordinal, and Multinomial Outcomes (May 2021)
  • Introduction to Generalized Linear Mixed Models (May 2021)

Read Our Book



Data Analysis with SPSS
(4th Edition)

by Stephen Sweet and
Karen Grace-Martin

Statistical Resources by Topic

  • Fundamental Statistics
  • Effect Size Statistics, Power, and Sample Size Calculations
  • Analysis of Variance and Covariance
  • Linear Regression
  • Complex Surveys & Sampling
  • Count Regression Models
  • Logistic Regression
  • Missing Data
  • Mixed and Multilevel Models
  • Principal Component Analysis and Factor Analysis
  • Structural Equation Modeling
  • Survival Analysis and Event History Analysis
  • Data Analysis Practice and Skills
  • R
  • SPSS
  • Stata

Copyright © 2008–2021 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.