• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • our programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • statistical resources
  • blog
  • about
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • contact
  • login

outcome variable

Member Training: Logistic Regression for Count and Proportion Data

by Karen Grace-Martin  Leave a Comment

Most of us know that binary logistic regression is appropriate when the outcome variable has two possible outcomes: success and failure.

There are two more situations that are also appropriate for binary logistic regression, but they don’t always look like they should be.

[Read more…] about Member Training: Logistic Regression for Count and Proportion Data

Tagged With: Bernoulli, binomial, Discrete Counts, logistic regression, normal distribution, outcome variable, poisson

Related Posts

  • Member Training: Making Sense of Statistical Distributions
  • Member Training: Explaining Logistic Regression Results to Non-Researchers
  • Member Training: Types of Regression Models and When to Use Them
  • The Difference Between the Bernoulli and Binomial Distributions

Member Training: Zero Inflated Models

by Karen Grace-Martin  Leave a Comment

A common situation with count outcome variables is there are a lot of zero values.  The Poisson distribution used for modeling count variables takes into account that zeros are often the most common value, but sometimes there are even more zeros than the Poisson distribution can account for.

This can happen in continuous variables as well–most of the distribution follows a beautiful normal distribution, except for the big stack of zeros.

This webinar will explore two ways of modeling zero-inflated data: the Zero Inflated model and the Hurdle model. Both assume there are two different processes: one that affects the probability of a zero and one that affects the actual values, and both allow different sets of predictors for each process.

We’ll explore these models as well as some related models, like Zero-One Inflated Beta models for proportion data.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

[Read more…] about Member Training: Zero Inflated Models

Tagged With: beta regression, count model, hurdle model, outcome variable, Zero Inflated, zero values

Related Posts

  • Member Training: Count Models
  • Member Training: Types of Regression Models and When to Use Them
  • Member Training: Moderated Mediation, Not Mediated Moderation
  • Member Training: Multinomial Logistic Regression

Incorporating Graphs in Regression Diagnostics with Stata

by Jeff Meyer  Leave a Comment

by Jeff MeyerStage 2

You put a lot of work into preparing and cleaning your data. Running the model is the moment of excitement.

You look at your tables and interpret the results. But first you remember that one or more variables had a few outliers. Did these outliers impact your results? [Read more…] about Incorporating Graphs in Regression Diagnostics with Stata

Tagged With: coefficients, cook's distance, influence, leverage, linear model, observations, outcome variable, outliers, post-estimation, Regression, residuals, studentized

Related Posts

  • Linear Regression in Stata: Missing Data and the Stories it Might Tell
  • Linear Models in R: Improving Our Regression Model
  • Same Statistical Models, Different (and Confusing) Output Terms
  • What is Multicollinearity? A Visual Description

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Moderated Mediation, Not Mediated Moderation

Upcoming Workshops

    No Events

Upcoming Free Webinars

TBA

Quick links

Our Programs Statistical Resources Blog/News About Contact Log in

Contact

Upcoming

Free Webinars Membership Trainings Workshops

Privacy Policy

Search

Copyright © 2008–2023 The Analysis Factor, LLC.
All rights reserved.

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT