• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • About
    • Our Programs
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Guest Instructors
  • Membership
    • Statistically Speaking Membership Program
    • Login
  • Workshops
    • Online Workshops
    • Login
  • Consulting
    • Statistical Consulting Services
    • Login
  • Free Webinars
  • Contact
  • Login

Z test

Member Training: Seven Fundamental Tests for Categorical Data

by TAF Support

In the world of statistical analyses, there are many tests and methods that for categorical data. Many become extremely complex, especially as the number of variables increases. But sometimes we need an analysis for only one or two categorical variables at a time. When that is the case, one of these seven fundamental tests may come in handy.

These tests apply to nominal data (categories with no order to them) and a few can apply to other types of data as well. They allow us to test for goodness of fit, independence, or homogeneity—and yes, we will discuss the difference! Whether these tests are new to you, or you need a good refresher, this training will help you understand how they work and when each is appropriate to use.

[Read more…] about Member Training: Seven Fundamental Tests for Categorical Data

Tagged With: categorical outcome, categorical variable, chi-square test, cochran-mantel-haenszel, fisher exact test, goodness of fit, independence, mcnemar test, Z test

Related Posts

  • Chi-Square Test of Independence Rule of Thumb: n > 5
  • September Member Training: Inference and p-values and Statistical Significance, Oh My!
  • Effect Size Statistics: How to Calculate the Odds Ratio from a Chi-Square Cross-tabulation Table
  • Member Training: Explaining Logistic Regression Results to Non-Researchers

One-tailed and Two-tailed Tests

by Karen Grace-Martin 29 Comments

I was recently asked about when to use one and two tailed tests.

The long answer is:  Use one tailed tests when you have a specific hypothesis about the direction of your relationship.  Some examples include you hypothesize that one group mean is larger than the other; you hypothesize that the correlation is positive; you hypothesize that the proportion is below .5.

The short answer is: Never use one tailed tests.

Why?

1. Only a few statistical tests even can have one tail: z tests and t tests.  So you’re severely limited.  F tests, Chi-square tests, etc. can’t accommodate one-tailed tests because their distributions are not symmetric.  Most statistical methods, such as regression and ANOVA, are based on these tests, so you will rarely have the chance to implement them.

2. Probably because they are rare, reviewers balk at one-tailed tests.  They tend to assume that you are trying to artificially boost the power of your test.  Theoretically, however, there is nothing wrong with them when the hypothesis and the statistical test are right for them.

 

Tagged With: F test, hypothesis testing, one-tailed test, T test, two-tailed test, Z test

Related Posts

  • Member Training: The Anatomy of an ANOVA Table
  • What is a Confounding Variable?
  • Why ANOVA is Really a Linear Regression, Despite the Difference in Notation
  • Using Pairwise Comparisons to Help you Interpret Interactions in Linear Regression

Primary Sidebar

Free Webinars

Effect Size Statistics on Tuesday, Feb 2nd

This Month’s Statistically Speaking Live Training

  • January Member Training: A Gentle Introduction To Random Slopes In Multilevel Models

Upcoming Workshops

  • Logistic Regression for Binary, Ordinal, and Multinomial Outcomes (May 2021)
  • Introduction to Generalized Linear Mixed Models (May 2021)

Read Our Book



Data Analysis with SPSS
(4th Edition)

by Stephen Sweet and
Karen Grace-Martin

Statistical Resources by Topic

  • Fundamental Statistics
  • Effect Size Statistics, Power, and Sample Size Calculations
  • Analysis of Variance and Covariance
  • Linear Regression
  • Complex Surveys & Sampling
  • Count Regression Models
  • Logistic Regression
  • Missing Data
  • Mixed and Multilevel Models
  • Principal Component Analysis and Factor Analysis
  • Structural Equation Modeling
  • Survival Analysis and Event History Analysis
  • Data Analysis Practice and Skills
  • R
  • SPSS
  • Stata

Copyright © 2008–2021 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.