• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • our programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • statistical resources
  • blog
  • about
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • contact
  • login

OptinMon 37 - Getting Started with Stata

Statistical Software Access From Home

by Karen Grace-Martin  1 Comment

Of all the stressors you’ve got right now, accessing your statistical software from home shouldn’t be one of them. (You know, the one on your office computer).

We’ve gotten some updates from some statistical software companies on how they’re making it easier to access the software you have a license to or to extend a free trial while you’re working from home.

[Read more…] about Statistical Software Access From Home

Tagged With: MPlus, R, SAS, SPSS, Stata, Statistical Software

Related Posts

  • Member Training: What’s the Best Statistical Package for You?
  • SPSS, SAS, R, Stata, JMP? Choosing a Statistical Software Package or Two
  • Tricks for Using Word to Make Statistical Syntax Easier
  • Ten Ways Learning a Statistical Software Package is Like Learning a New Language

Creating Graphs in Stata: From Percentiles to Observe Trends (Part 2)

by Jeff Meyer  2 Comments

by Jeff Meyer, MPA, MBA

In a previous post we discussed the difficulties of spotting meaningful information when we work with a large panel data set.

Observing the data collapsed into groups, such as quartiles or deciles, is one approach to tackling this challenging task.  We showed how this can be easily done in Stata using just 10 lines of code.

As promised, we will now show you how to graph the collapsed data. [Read more…] about Creating Graphs in Stata: From Percentiles to Observe Trends (Part 2)

Tagged With: collapsed data, graphs, long, percentiles, Stata, trends, wide

Related Posts

  • Converting Panel Data into Percentiles to Observe Trends in Stata (Part 1)
  • Argggh! How Do I Output Tables and Graphs From Stata?
  • Statistical Software Access From Home
  • The Wonderful World of User Written Commands in Stata

Converting Panel Data into Percentiles to Observe Trends in Stata (Part 1)

by Jeff Meyer  2 Comments

by Jeff Meyer, MPA, MBA

Panel data provides us with observations over several time periods per subject. In this first of two blog posts, I’ll walk you through the process. (Stick with me here. In Part 2, I’ll show you the graph, I promise.)

The challenge is that some of these data sets are massive. For example, if we’ve collected data on 100,000 individuals over 15 time periods, then that means we have 1.5 million cells of information.

So how can we look through this massive amount of data and observe trends over the time periods that we have tracked? [Read more…] about Converting Panel Data into Percentiles to Observe Trends in Stata (Part 1)

Tagged With: panel data, percentiles, Stata, trends

Related Posts

  • Creating Graphs in Stata: From Percentiles to Observe Trends (Part 2)
  • Statistical Software Access From Home
  • The Wonderful World of User Written Commands in Stata
  • Stata Loops and Macros for Large Data Sets: Quickly Finding Needles in the Hay Stack

The Wonderful World of User Written Commands in Stata

by Jeff Meyer  4 Comments

by Jeff Meyer

Fortunately there are some really, really smart people who use Stata. Yes I know, there are really, really smart people that use SAS and SPSS as well.

But unlike SAS and SPSS users, Stata users benefit from the contributions made by really, really smart people. How so? Is Stata an “open source” software package?

Technically a commercial software package (software you have to pay for) cannot be open source. Based on that definition Stata, SPSS and SAS are not open source. R is open source.

But, because I have a Stata license (once you have it, it never expires) I think of Stata as being open source. This is because Stata allows members of the Stata community to share their expertise.

There are countless commands written by very, very smart non-Stata employees that are available to all Stata users.

Practically all of these commands, which are free, can be downloaded from the SSC (Statistical Software Components) archive. The SSC archive is maintained by the Boston College Department of Economics. The website is: https://ideas.repec.org/s/boc/bocode.html

There are over three thousand commands available for downloading. Below I have highlighted three of the 185 that I have downloaded.

1. coefplot is a command written by Ben Jann of the Institute of Sociology, University of Bern, Bern, Switzerland. This command allows you to plot results from estimation commands.

In a recent post on diagnosing missing data, I ran two models comparing the observations that reported income versus the observations that did not report income, models 3d and 3e.

Using the coefplot command I can graphically compare the coefficients and confidence intervals for each independent variable used in the models.

The code and graph are:

coefplot model_3d model_3e, drop(_cons) xline(0)

Including the code xline(0) creates a vertical line at zero which quickly allows me to determine whether a confidence interval spans both positive and negative territory.

stata_jan2016_001

I can also separate the predictor variables into individual graphs:

coefplot model_3d || model_3e, yline(0) bycoefs vertical byopts(yrescale) ylabel(, labsize(vsmall))

stata_jan2016_002

2. Nicholas Cox of Durham University and Gary Longton of the Fred Hutchinson Cancer Research Center created the command distinct. This command generates a table with the count of distinct observations for each variable in the data set.

When getting to know a data set, it can be helpful to search for potential indicator, categorical and continuous variables. The distinct command along with its min(#) and max(#) options allows an easy search for variables that fit into these categories.

For example, to create a table of all variables with three to seven distinct observations I use the following code:
distinct, min(3) max(7)

In addition, the command generates the scalar r(ndistinct). In the workshop Managing Data and Optimizing Output in Stata, we used this scalar within a loop to create macros for continuous, categorical and indicator variables.

3. In a data set it is not uncommon to have outliers. There are primarily three options for dealing with outliers. We can keep them as they are, winsorize the observations (change their values), or delete them. Note, winsorizing and deleting observations can introduce statistical bias.

If you choose to winsorize your data I suggest you check out the command winsor2. This was created by Lian Yujun of Sun Yat-Sen University, China. This command incorporates coding from the command winsor created by Nicholas Cox and Judson Caskey.

The command creates a new variable, adding a suffix “_w” to the original variable’s name. The default setting changes observations whose values are less than the 1st percentile to the 1 percentile. Values greater than the 99th percentile are changed to equal the 99th percentile. Example:

winsor2 salary (makes changes at the 1st and 99th percentile for the variable “salary”)

The user has the option to change the values to the percentile of their choice.
winsor2 salary, cuts(0.5 99.5) (makes changes at the 0.5st and 99.5th percentile)

To add these three commands to your Stata software execute the following code and click on the links to download the commands:

findit coefplot
findit
distinct
findit
winsor2

As shown in the December, 2015 free webinar “Stata’s Bountiful Help Resources”, you can also explore all the add-on commands via Stata’s “Help” menu. Go to “Help” => “SJ and User Written Commands” to explore.

Jeff Meyer is a statistical consultant with The Analysis Factor, a stats mentor for Statistically Speaking membership, and a workshop instructor. Read more about Jeff here.

Tagged With: commands, customization, open source, software, Stata, user written

Related Posts

  • Statistical Software Access From Home
  • Using Stored Calculations in Stata to Center Predictors: an Example
  • Argggh! How Do I Output Tables and Graphs From Stata?
  • Loops in Stata: Making coding easy

Stata Loops and Macros for Large Data Sets: Quickly Finding Needles in the Hay Stack

by Jeff Meyer  1 Comment

by Jeff Meyer

I recently opened a very  large data set titled “1998 California Work and Health Survey” compiled by the Institute for Health Policy Studies at the University of California, San Francisco. There are 1,771 observations and 345 variables. [Read more…] about Stata Loops and Macros for Large Data Sets: Quickly Finding Needles in the Hay Stack

Tagged With: compact, recode, Stata, SUMMARIZE

Related Posts

  • Using the Collapse Command in Stata
  • Using Stored Calculations in Stata to Center Predictors: an Example
  • Loops in Stata: Making coding easy
  • Statistical Software Access From Home

Using the Collapse Command in Stata

by Jeff Meyer  12 Comments

Have you ever worked with a data set that had so many observations and/or variables that you couldn’t see the forest for the trees? You would like to extract some simple information but you can’t quite figure out how to do it.

Get to know Stata’s collapse command–it’s your new friend. Collapse allows you to convert your current data set to a much smaller data set of means, medians, maximums, minimums, count or percentiles (your choice of which percentile).

Let’s take a look at an example. I’m currently looking at a longitudinal data set filled with economic data on all 67 counties in Alabama. The time frame is in decades, from 1960 to 2000. Five time periods by 67 counties give me a total of 335 observations.

What if I wanted to see some trend information, such as the total population and jobs per decade for all of Alabama? I just want a simple table to see my results as well as a graph. I want results that I can copy and paste into a Word document.

Here’s my code:

preserve
collapse (sum) Pop Jobs, by(year)
graph twoway (line Pop year) (line Jobs year), ylabel(, angle(horizontal))
list

And here is my output:
image002
image004

By starting my code with the preserve command it brings my data set back to its original state after providing me with the results I want.

What if I want to look at variables that are in percentages, such as percent of college graduates, mobility and labor force participation rate (lfp)? In this case I don’t want to sum the values because they are in percent.

Calculating the mean would give equal weighting to all counties regardless of size.

Fortunately Stata gives you a very simple way to weight your data based on frequency. You have to determine which variable to use. In this situation I will use the population variable.

Here’s my coding and results:

Preserve
collapse (mean) lfp College Mobil [fw=Pop], by(year)
graph twoway (line lfp year) (line College year) (line Mobil year), ylabel(, angle(horizontal))
list

image006
image008
It’s as easy as that. This is one of the five tips and tricks I’ll be discussing during the free Stata webinar on Wednesday, July 29th.

Jeff Meyer is a statistical consultant with The Analysis Factor, a stats mentor for Statistically Speaking membership, and a workshop instructor. Read more about Jeff here.

Tagged With: collapse, graph, preserve, Stata

Related Posts

  • Stata Loops and Macros for Large Data Sets: Quickly Finding Needles in the Hay Stack
  • Using Stored Calculations in Stata to Center Predictors: an Example
  • Loops in Stata: Making coding easy
  • Statistical Software Access From Home

  • Go to page 1
  • Go to page 2
  • Go to Next Page »

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: The Link Between ANOVA and Regression

Upcoming Workshops

    No Events

Upcoming Free Webinars

TBA

Quick links

Our Programs Statistical Resources Blog/News About Contact Log in

Contact

Upcoming

Free Webinars Membership Trainings Workshops

Privacy Policy

Search

Copyright © 2008–2023 The Analysis Factor, LLC.
All rights reserved.

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT