*by David Lillis, Ph.D.*

In my last post I used the glm() command in R to fit a logistic model with binomial errors to investigate the relationships between the numeracy and anxiety scores and their eventual success.

Now we will create a plot for each predictor. This can be very helpful for helping us understand the effect of each predictor on the probability of a 1 response on our dependent variable.

We wish to plot each predictor separately, so first we fit a separate model for each predictor. This isn’t the only way to do it, but one that I find especially helpful for deciding which variables should be entered as predictors.

model_numeracy <- glm(success ~ numeracy, binomial) summary(model_numeracy) Call: glm(formula = success ~ numeracy, family = binomial) Deviance Residuals: Min 1Q Median 3Q Max -1.5814 -0.9060 0.3207 0.6652 1.8266 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -6.1414 1.8873 -3.254 0.001138 ** numeracy 0.6243 0.1855 3.366 0.000763 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 68.029 on 49 degrees of freedom Residual deviance: 50.291 on 48 degrees of freedom AIC: 54.291 Number of Fisher Scoring iterations: 5

We do the same for anxiety**. **

model_anxiety <- glm(success ~ anxiety, binomial) summary(model_anxiety) Call: glm(formula = success ~ anxiety, family = binomial) Deviance Residuals: Min 1Q Median 3Q Max -1.8680 -0.3582 0.1159 0.6309 1.5698 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 19.5819 5.6754 3.450 0.000560 *** anxiety -1.3556 0.3973 -3.412 0.000646 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 68.029 on 49 degrees of freedom Residual deviance: 36.374 on 48 degrees of freedom AIC: 40.374 Number of Fisher Scoring iterations: 6

Now we create our plots. First we set up a sequence of length values which we will use to plot the fitted model. Let’s find the range of each variable.

range(numeracy) [1] 6.6 15.7 range(anxiety) [1] 10.1 17.7

** **

Given the range of both numeracy and anxiety. A sequence from 0 to 15 is about right for plotting numeracy, while a range from 10 to 20 is good for plotting anxiety.

xnumeracy <-seq (0, 15, 0.01) ynumeracy <- predict(model_numeracy, list(numeracy=xnumeracy),type="response")

** **

Now we use the predict() function to set up the fitted values. The syntax type = “response” back-transforms from a linear logit model to the original scale of the observed data (i.e. binary).

** **

plot(numeracy, success, pch = 16, xlab = "NUMERACY SCORE", ylab = "ADMISSION") lines(xnumeracy, ynumeracy, col = "red", lwd = 2)

The model has produced a curve that indicates the probability that success = 1 to the numeracy score. Clearly, the higher the score, the more likely it is that the student will be accepted.

Now we plot for anxiety.

xanxiety <- seq(10, 20, 0.1) yanxiety <- predict(model_anxiety, list(anxiety=xanxiety),type="response") plot(anxiety, success, pch = 16, xlab = "ANXIETY SCORE", ylab = "SUCCESS") lines(xanxiety, yanxiety, col= "blue", lwd = 2)

Clearly, those who score high on anxiety are unlikely to be admitted, possibly because their admissions test results are affected by their high level of anxiety.

****

See our full R Tutorial Series and other blog posts regarding R programming.

**About the Author:** *David Lillis has taught R to many researchers and statisticians. His company, Sigma Statistics and Research Limited, provides both on-line instruction and face-to-face workshops on R, and coding services in R. David holds a doctorate in applied statistics.*

### Related Posts

- Generalized Linear Models (GLMs) in R, Part 4: Options, Link Functions, and Interpretation
- Generalized Linear Models in R, Part 2: Understanding Model Fit in Logistic Regression Output
- What R Commander Can do in R Without Coding–More Than You Would Think
- Generalized Linear Models in R, Part 7: Checking for Overdispersion in Count Regression