Member Training: Analysis of Ordinal Variables–Options Beyond Nonparametrics

by Karen Grace-Martin

There are many types and examples of ordinal variables: percentiles, ranks, likert scale items, to name a few.

These are especially hard to know how to analyze–some people treat them as numerical, others emphatically say not to.  Everyone agrees nonparametric tests work, but these are limited to testing only simple hypotheses and designs.  So what do you do if you want to test something more elaborate?

In this webinar we’re going to lay out all the options and when each is reasonable.  There are more options than most people realize.

We’ll discuss the advantages and disadvantages of each one and what assumptions you’re really making when you pick one.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

About the Instructor

Karen Grace-Martin helps statistics practitioners gain an intuitive understanding of how statistics is applied to real data in research studies.

She has guided and trained researchers through their statistical analysis for over 15 years as a statistical consultant at Cornell University and through The Analysis Factor. She has master’s degrees in both applied statistics and social psychology and is an expert in SPSS and SAS.

Not a Member Yet?

It’s never too early (or late) to set yourself up for successful analysis with support and training from expert statisticians.

Just head over and sign up for Statistically Speaking.

You’ll get exclusive access to this training webinar, plus live Q&A sessions, a private stats forum, 75+ other stats trainings, and more.

Leave a Comment

Please note that, due to the large number of comments submitted, any comments on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.

Previous post:

Next post: