• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • About
    • Our Programs
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Guest Instructors
  • Membership
    • Statistically Speaking Membership Program
    • Login
  • Workshops
    • Online Workshops
    • Login
  • Consulting
    • Statistical Consulting Services
    • Login
  • Free Webinars
  • Contact
  • Login

Member Training: A Gentle Introduction to Generalized Linear Mixed Models

by guest Leave a Comment

Generalized linear mixed models (GLMMs) are incredibly useful—but they’re also a hard nut to crack.

As an extension of generalized linear models, GLMMs include both fixed and random effects. They are particularly useful when an outcome variable and a set of predictor variables are measured repeatedly over time and the outcome variable is a binary, nominal, ordinal or count variable. These models accommodate nesting of subjects in higher level units such as schools, hospitals, etc., and can also incorporate predictor variables collected at these higher levels.

In this webinar, we’ll provide a gentle introduction to GLMMs, discussing issues like:

  • What GLMMs are and when to use them
  • What to consider when specifying GLMMs
  • How to compare competing GLMMs to identify the most adequate model for the data
  • How to interpret model fit information
  • What types of inference and prediction are supported by GLMMs
  • How to check the validity of model assumptions

You’ll become familiar with the major issues involved in working with GLMMs so you can more easily transition to using these models in your work.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

Not a Member? Join!

About the Instructor

Dr. Isabella Ghement is the principal of Ghement Statistical Consulting Company Ltd., an independent statistical consulting and training firm in Richmond, British Columbia, Canada.

Isabella has presented a number of R and advanced regression short courses at conferences and universities. She is a member of the Steering Committee for the American Statistical Association’s Conference on Applied Statistical Practice 2017, where she chairs the Short Courses and Tutorials Sub-Committee.

Isabella obtained her Ph.D. in Statistics from the University of British Columbia.

Not a Member Yet?

It’s never too early to set yourself up for successful analysis with support and training from expert statisticians. Just head over and sign up for Statistically Speaking. You'll get access to this training webinar and 85+ other stats trainings — plus the expert guidance you need to progress with live Q&A sessions and an ask-a-mentor forum.

Tagged With: generalized linear mixed model

Related Posts

  • Member Training: A Gentle Introduction to Generalized Linear Mixed Models – Part 2
  • Member Training: Mixture Models in Longitudinal Data Analysis
  • January Member Training: A Gentle Introduction To Random Slopes In Multilevel Models
  • December Member Training: Missing Data

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Please note that, due to the large number of comments submitted, any questions on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • January Member Training: A Gentle Introduction To Random Slopes In Multilevel Models

Upcoming Workshops

  • Logistic Regression for Binary, Ordinal, and Multinomial Outcomes (May 2021)
  • Introduction to Generalized Linear Mixed Models (May 2021)

Read Our Book



Data Analysis with SPSS
(4th Edition)

by Stephen Sweet and
Karen Grace-Martin

Statistical Resources by Topic

  • Fundamental Statistics
  • Effect Size Statistics, Power, and Sample Size Calculations
  • Analysis of Variance and Covariance
  • Linear Regression
  • Complex Surveys & Sampling
  • Count Regression Models
  • Logistic Regression
  • Missing Data
  • Mixed and Multilevel Models
  • Principal Component Analysis and Factor Analysis
  • Structural Equation Modeling
  • Survival Analysis and Event History Analysis
  • Data Analysis Practice and Skills
  • R
  • SPSS
  • Stata

Copyright © 2008–2021 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.