• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • our programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • statistical resources
  • blog
  • about
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • contact
  • login

logistic regression

Member Training: Generalized Linear Models

by guest contributer  Leave a Comment

In this webinar, we will provide an overview of generalized linear models. You may already be using them (perhaps without knowing it!).
For example, logistic regression is a type of generalized linear model that many people are already familiar with. Alternatively, maybe you’re not using them yet and you are just beginning to understand when they might be useful to you.
[Read more…] about Member Training: Generalized Linear Models

Tagged With: bayesian, distribution, error distribution, generalized linear models, GLM, linear model, linear regression, link function, logistic regression, maximum likelihood, mixed model, Poisson Regression

Related Posts

  • Member Training: Goodness of Fit Statistics
  • Member Training: Types of Regression Models and When to Use Them
  • Member Training: Matrix Algebra for Data Analysts: A Primer
  • Why Generalized Linear Models Have No Error Term

Member Training: Logistic Regression for Count and Proportion Data

by Karen Grace-Martin  Leave a Comment

Most of us know that binary logistic regression is appropriate when the outcome variable has two possible outcomes: success and failure.

There are two more situations that are also appropriate for binary logistic regression, but they don’t always look like they should be.

[Read more…] about Member Training: Logistic Regression for Count and Proportion Data

Tagged With: Bernoulli, binomial, Discrete Counts, logistic regression, normal distribution, outcome variable, poisson

Related Posts

  • Member Training: Making Sense of Statistical Distributions
  • Member Training: Explaining Logistic Regression Results to Non-Researchers
  • Member Training: Types of Regression Models and When to Use Them
  • Member Training: Multinomial Logistic Regression

When to Use Logistic Regression for Percentages and Counts

by Karen Grace-Martin  6 Comments

One important yet difficult skill in statistics is choosing a type model for different data situations. One key consideration is the dependent variable.

For linear models, the dependent variable doesn’t have to be normally distributed, but it does have to be continuous, unbounded, and measured on an interval or ratio scale.

Percentages don’t fit these criteria. Yes, they’re continuous and ratio scale. The issue is the [Read more…] about When to Use Logistic Regression for Percentages and Counts

Tagged With: binomial, Count data, count model, dependent variable, events, logistic regression, Negative Binomial Regression, percentage data, Poisson Regression, trials

Related Posts

  • When Linear Models Don’t Fit Your Data, Now What?
  • Member Training: Count Models
  • Proportions as Dependent Variable in Regression–Which Type of Model?
  • Poisson Regression Analysis for Count Data

Member Training: Marginal Means, Your New Best Friend

by Jeff Meyer  Leave a Comment

Interpreting regression coefficients can be tricky, especially when the model has interactions or categorical predictors (or worse – both).

But there is a secret weapon that can help you make sense of your regression results: marginal means.

They’re not the same as descriptive stats. They aren’t usually included by default in our output. And they sometimes go by the name LS or Least-Square means.

And they’re your new best friend.

So what are these mysterious, helpful creatures?

What do they tell us, really? And how can we use them?

[Read more…] about Member Training: Marginal Means, Your New Best Friend

Tagged With: logistic regression

Related Posts

  • Member Training: Hierarchical Regressions
  • Member Training: Centering
  • Member Training: Classic Experimental Designs
  • Member Training: ANOVA Post-hoc Tests: Practical Considerations

The Difference Between Logistic and Probit Regression

by Karen Grace-Martin  17 Comments

One question that seems to come up pretty often is:

What is the difference between logistic and probit regression?

 

Well, let’s start with how they’re the same:

Both are types of generalized linear models. This means they have this form:

glm
[Read more…] about The Difference Between Logistic and Probit Regression

Tagged With: categorical outcome, generalized linear models, inverse normal link, link function, logistic regression, logit link, probit regression

Related Posts

  • Generalized Linear Models in R, Part 1: Calculating Predicted Probability in Binary Logistic Regression
  • Guidelines for writing up three types of odds ratios
  • Logistic Regression Analysis: Understanding Odds and Probability
  • How to Decide Between Multinomial and Ordinal Logistic Regression Models

What Is an ROC Curve?

by Karen Grace-Martin  2 Comments

An incredibly useful tool in evaluating and comparing predictive models is the ROC curve.

Its name is indeed strange. ROC stands for Receiver Operating Characteristic. Its origin is from sonar back in the 1940s. ROCs were used to measure how well a sonar signal (e.g., from an enemy submarine) could be detected from noise (a school of fish).

ROC curves are a nice way to see how any predictive model can distinguish between the true positives and negatives. [Read more…] about What Is an ROC Curve?

Tagged With: decision rules, logistic regression, predicted probability, ROC Curve, sensitivity

Related Posts

  • Measures of Predictive Models: Sensitivity and Specificity
  • Generalized Linear Models in R, Part 1: Calculating Predicted Probability in Binary Logistic Regression
  • Guidelines for writing up three types of odds ratios
  • Logistic Regression Analysis: Understanding Odds and Probability

  • « Go to Previous Page
  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Go to page 4
  • Go to page 5
  • Interim pages omitted …
  • Go to page 8
  • Go to Next Page »

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Multinomial Logistic Regression

Upcoming Workshops

    No Events

Upcoming Free Webinars

TBA

Quick links

Our Programs Statistical Resources Blog/News About Contact Log in

Contact

Upcoming

Free Webinars Membership Trainings Workshops

Privacy Policy

Search

Copyright © 2008–2023 The Analysis Factor, LLC.
All rights reserved.

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT