• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • About
    • Our Programs
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Guest Instructors
  • Membership
    • Statistically Speaking Membership Program
    • Login
  • Workshops
    • Online Workshops
    • Login
  • Consulting
    • Statistical Consulting Services
    • Login
  • Free Webinars
  • Contact
  • Login

Model Assumptions

When to Check Model Assumptions

by Karen Grace-Martin 1 Comment

Like the chicken and the egg, there’s a question about which comes first: run a model or test assumptions? Unlike the chickens’, the model’s question has an easy answer.

There are two types of assumptions in a statistical model.  Some are distributional assumptions about the residuals.  Examples include independence, normality, and constant variance in a linear model.

Others are about the form of the model.  They include linearity and [Read more…] about When to Check Model Assumptions

Tagged With: categorical outcome, Censored, Model Assumptions, testing normality, Zero Inflated

Related Posts

  • When Dependent Variables Are Not Fit for Linear Models, Now What?
  • Member Training: Types of Regression Models and When to Use Them
  • 6 Types of Dependent Variables that will Never Meet the Linear Model Normality Assumption
  • Confusing Statistical Term #7: GLM

The Distribution of Independent Variables in Regression Models

by Karen Grace-Martin 8 Comments

While there are a number of distributional assumptions in regression models, one distribution that has no assumptions is that of any predictor (i.e. independent) variables.

It’s because regression models are directional. In a correlation, there is no direction–Y and X are interchangeable. If you switched them, you’d get the same correlation coefficient.

But regression is inherently a model about the outcome variable. What predicts its value and how well? The nature of how predictors relate to it [Read more…] about The Distribution of Independent Variables in Regression Models

Tagged With: distribution, independent variable, Model Assumptions, predictor variable

Related Posts

  • The Distribution of Independent Variables in Regression Models
  • A Visual Description of Multicollinearity
  • A Strategy for Converting a Continuous to a Categorical Predictor
  • The Impact of Removing the Constant from a Regression Model: The Categorical Case

Checking Assumptions in ANOVA and Linear Regression Models: The Distribution of Dependent Variables

by Karen Grace-Martin 25 Comments

Here’s a little reminder for those of you checking assumptions in regression and ANOVA:

The assumptions of normality and homogeneity of variance for linear models are not about Y, the dependent variable.    (If you think I’m either stupid, crazy, or just plain nit-picking, read on.  This distinction really is important). [Read more…] about Checking Assumptions in ANOVA and Linear Regression Models: The Distribution of Dependent Variables

Tagged With: ANOVA, distribution, linear regression, Model Assumptions, normality, Q-Q plot, residuals

Related Posts

  • Member Training: The Multi-Faceted World of Residuals
  • Can Likert Scale Data ever be Continuous?
  • Same Statistical Models, Different (and Confusing) Output Terms
  • Why ANOVA is Really a Linear Regression, Despite the Difference in Notation

Can Likert Scale Data ever be Continuous?

by Karen Grace-Martin 56 Comments

A very common question is whether it is legitimate to use Likert scale data in parametric statistical procedures that require interval data, such as Linear Regression, ANOVA, and Factor Analysis. A typical Likert scale item has 5 to 11 points that indicate the degree of agreement with a statement, such as 1=Strongly Agree to 5=Strongly Disagree. It can be a 1 to 5 scale, 0 to 10, etc.

The issue is that despite being made up of numbers, a Likert scale item is in fact a set of ordered categories.

One camp maintains that as ordered categories, the intervals between the scale values are not equal. Any mean, correlation, or other numerical operation applied to them is invalid. Only nonparametic statistics should be used on Likert scale data (i.e. Jamieson, 2004).

The other camp maintains that while technically the Likert scale item is ordered, using it in parametric tests is valid in some situations. For example, Lubke & Muthen (2004) found that it is possible to find true parameter values in factor analysis with Likert scale data, if assumptions about skewness, number of categories, etc., were met. Likewise, Glass et al. (1972) found that F tests in ANOVA could return accurate p-values on Likert items under certain conditions.

Meanwhile, the debate rages on.

What is a researcher with integrity supposed to do? In the absence of a definitive answer, these are my recommendations:

  1. Understand the difference between a Likert type item and a Likert Scale. A true Likert scale, as Likert defined it, is made up of many items, which all measure the same attitude. But many people use the term Likert Scale to refer to a single item. Confusion about what a Likert Scale is, no doubt, has contributed to the debate.
  2. Proceed with caution. Research the consequences of using your procedure on Likert scale data from your study design. The fact that everyone uses it is not sufficient justification. There are some circumstances and procedures for which it is more egregious than others.
  3. At the very least, insist that the item have at least 5 points (7 is better), that the underlying concept be continuous, and that there be some indication that the intervals between points are approximately equal. Make sure the other assumptions (normality & equal variance of residuals, etc.) be met.
  4. When you can, run the nonparametric equivalent to your test. If you get the same results, you can be confident about your conclusions.
  5. If you do choose to use Likert data in a parametric procedure, make sure you have strong results before making claims. Use a more stringent alpha level, like .01 or even .005, instead of .05. If you have p-values of .001 or .45, it’s pretty clear what the result is, even if parameter estimates are slightly biased. It’s when p-values are close to .05 that the effect of bending assumptions is unclear.
  6. Consider the consequences of reporting inaccurate results. Will anyone ever read your paper? Will your research be published? Will it be used to shape public policy or affect practices? The answers to these questions can inform the seriousness of potential problems.

References:
Carifio, J. & Perla, R. (2007). Ten Common Misunderstandings, Misconceptions, Persistent Myths and Urban Legends about Likert Scales and Likert Response Formats and their Antidotes. Journal of Social Sciences, 2, 106-116. http://thescipub.com/PDF/jssp.2007.106.116.pdf

Glass, Peckham, and Sanders (1972). Consequences of failure to meet assumptions underlying the analyses of variance and covariance, Review of Educational Research, 42, 237-288.

Jamieson, S. (2004). Likert scales: how to (ab)use them. Medical Education, 38, 1212-1218.

Lubke, Gitta H.; Muthen, Bengt O. (2004). Applying Multigroup Confirmatory Factor Models for Continuous Outcomes to Likert Scale Data Complicates Meaningful Group Comparisons. Structural Equation Modeling, 11, 514-534.

Tagged With: ANOVA, continuous variable, Factor Analysis, Likert Scale, linear regression, Model Assumptions, Nonparametric statistics

Related Posts

  • Beyond Median Splits: Meaningful Cut Points
  • Checking Assumptions in ANOVA and Linear Regression Models: The Distribution of Dependent Variables
  • Why ANOVA is Really a Linear Regression, Despite the Difference in Notation
  • Member Training: The Multi-Faceted World of Residuals

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • February Member Training: Choosing the Best Statistical Analysis

Upcoming Workshops

  • Logistic Regression for Binary, Ordinal, and Multinomial Outcomes (May 2021)
  • Introduction to Generalized Linear Mixed Models (May 2021)

Read Our Book



Data Analysis with SPSS
(4th Edition)

by Stephen Sweet and
Karen Grace-Martin

Statistical Resources by Topic

  • Fundamental Statistics
  • Effect Size Statistics, Power, and Sample Size Calculations
  • Analysis of Variance and Covariance
  • Linear Regression
  • Complex Surveys & Sampling
  • Count Regression Models
  • Logistic Regression
  • Missing Data
  • Mixed and Multilevel Models
  • Principal Component Analysis and Factor Analysis
  • Structural Equation Modeling
  • Survival Analysis and Event History Analysis
  • Data Analysis Practice and Skills
  • R
  • SPSS
  • Stata

Copyright © 2008–2021 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.

SAVE & ACCEPT