• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • Our Programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • About
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • Statistical Resources
  • Contact
  • Blog
  • Login

Three Tips for Principal Component Analysis

by Karen Grace-Martin 5 Comments

Principal Component Analysis (PCA) is a handy statistical tool to always have available in your data analysis tool belt.

It’s a data reduction technique, which means it’s a way of capturing the variance in many variables in a smaller, easier-to-work-with set of variables.

There are many, many details involved, though, so here are a few things to remember as you run your PCA.

1. The goal of PCA is to summarize the correlations among a set of observed variables with a smaller set of linear combinations.

So the first step your software is doing is creating a correlation or covariance matrix of those variables, and basing everything else on it.

Some software programs allow you to use a correlation or covariance matrix as an input data set.

This comes in very handy if you either don’t have the original data or have missing data.  In the case of missing data, you can use the unbiased EM estimates of the correlation matrix as input.

2. Because it’s trying to capture the total variance in the set of variables, PCA requires that the input variables have similar scales of measurement.

If the observed variables are all a set of 7-point likert items, it’s no problem.  They’re all measured on the same scale and the variances will be relatively similar.

But if you’re trying to combine correlated variables that all get at the size of trees, like: the trunk diameter in cm, biomass of leaves in kg, number of branches, overall height in meters–those are going to be on vastly different scales.  Variables whose numbers are just larger will have much bigger variance just because the numbers are so big.  (Remember that variances are squared values, so big numbers get amplified).

If you’re starting with a covariance matrix, it’s a good idea to standardize those variables before you begin so that the variables with the biggest scales don’t overwhelm the PCA.

Alternatively, base it on the correlation matrix, since correlations are themselves standardized.  This is generally an option in your software, and is likely the default.  Just make sure.

3. Each component’s eigenvalue represents how much variance it explains.

The PCA is, by definition, creating the same number of components as there are original variables.  But usually only a few capture enough variance to be useful.

When we say we have a two component solution, we’re actually saying that the first two components capture enough variance in the full set of variables to be useful.

These components are ordered in terms of the amount of variance each explains.

So the first explains the most variance, the second explains the next.  The variance that each explains is measured by its eigenvalue, which is scaled in terms of “number of variables worth of variance.”

You’ll notice that the eigenvalues always add up to the total number of variables.

So if a component has an eigenvalue of 2.5, it explains as much variance as 2.5 of the original variables.  That’s probably useful.

A component with a small eigenvalue, say .3, isn’t so useful.  You’d be better off using an original variable, which has one variable’s worth of variance (it’s own), than this component.

 

Principal Component Analysis
Summarize common variation in many variables... into just a few. Learn the 5 steps to conduct a Principal Component Analysis and the ways it differs from Factor Analysis.

Tagged With: correlation matrix, Covariance Matrix, eigenvalue, principal component analysis

Related Posts

  • Four Common Misconceptions in Exploratory Factor Analysis
  • In Factor Analysis, How Do We Decide Whether to Have Rotated or Unrotated Factors?
  • Can You Use Principal Component Analysis with a Training Set Test Set Model?
  • Can We Use PCA for Reducing Both Predictors and Response Variables?

Reader Interactions

Comments

  1. Marta says

    May 10, 2021 at 7:04 am

    Hi Karen,
    Thank you for this post.
    I have one question.
    Could I/Should I remove enviromental variables that are not statistically significant before PCA?
    Thank you in advance for help
    Bests

    Reply
    • Karen Grace-Martin says

      November 30, 2021 at 4:31 pm

      Marta, I wouldn’t use statistical significance as a decision rule for removing variables. It’s too arbitrary.

      Reply
  2. Mohsen Soltani says

    October 17, 2017 at 10:44 am

    Hello Karen,
    Thank you for the tips on PCA.
    Actually, I have a “parameter covariance matrix”. I would like to perform PCA on it. I am not sure how to do that!? To me, it is easy to perform PCA on variables/observations. However, it is a bit challenge to do it using the parameter covariance matrix, as an input data. Any ideas? Thank you.

    Reply
    • HVDC says

      October 9, 2018 at 2:42 pm

      Puede ser obteniendo los autovalores y autovectores de dicha matriz, así verá la varianza de cada componente y decidirá cuál o cuáles utilizar. Los autovectores le darán la dirección.

      Reply
    • TAF Support says

      January 15, 2020 at 2:05 pm

      Hi Mohsen,

      I touch on that here: https://www.theanalysisfactor.com/principal-component-analysis-for-ordinal-scale-items/

      Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Please note that, due to the large number of comments submitted, any questions on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Analyzing Pre-Post Data

Upcoming Free Webinars

Poisson and Negative Binomial Regression Models for Count Data

Upcoming Workshops

  • Analyzing Count Data: Poisson, Negative Binomial, and Other Essential Models (Jul 2022)
  • Introduction to Generalized Linear Mixed Models (Jul 2022)

Copyright © 2008–2022 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT