• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • About
    • Our Programs
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Guest Instructors
  • Membership
    • Statistically Speaking Membership Program
    • Login
  • Workshops
    • Online Workshops
    • Login
  • Consulting
    • Statistical Consulting Services
    • Login
  • Free Webinars
  • Contact
  • Login

Four Common Misconceptions in Exploratory Factor Analysis

by guest Leave a Comment

by Christos Giannoulis, PhD

Today, I would like to briefly describe four misconceptions that I feel are commonly perceived by novice researchers in Exploratory Factor Analysis:

Misconception 1: The choice between component and common factor extraction procedures is not so important.

In Principal Component Analysis, a set of variables is transformed into a smaller set of linear composites known as components. This method of analysis is essentially a method for data reduction.

As an example, a researcher may want to predict performance from scores on several aptitudes on academic readiness tests. However, because the test scores are known to be correlated, the researcher may wish to “boil them down” into a smaller set of composite variables, or components. These components could then be used as predictors in place of the variables, thereby avoiding potential multicollinearity problems.

Principal Axis Factor Analysis or Common Factor Analysis, on the other hand, is concerned with uncovering the latent constructs underlying the variables, to better understand the nature of such constructs.

For example, instead of creating linear composites of the test scores, as in the previous example, the researcher may want to identify the underlying  constructs driving their correlations. Such a goal would call for a common factor analysis to understand and name the underlying factors.

If data reduction is the goal, component analysis should be used. If one is interested in describing the variables in terms of a smaller number of dimensions that underlie them, one should use common factor analysis.

Misconception 2: Orthogonal rotation results in better simple structure than oblique rotation.

Rotation in factor analysis generally results in solutions that are easier to interpret than unrotated solutions. Rotated solutions come in two basic forms: those yielding uncorrelated or orthogonal factors (or components) and those yielding correlated or oblique factors or components.

The interesting part of this misconception is that both types of rotation have the same goal: to obtain results that are “cleaner”, thus more interpretable.

The objective that accomplishes this goal for both types of rotation is called simple structure. It means a factor solution in which each observed variable is affected by as few common factors as possible, and each common factor only affects a subset of the observed variables.

With the same objectives for both rotations, which rotation method should you use?

Looking again at the definition of the two rotation methods, it seems that the choice should be based on whether the factors/components are expected to correlate. Therefore, my general recommendation is, in situations where there is no information available on the expected level of correlation, to choose oblique over orthogonal rotation.

If it turns out the factors are uncorrelated, the oblique rotation will yield an orthogonal solution anyway. If you really want to follow an orthogonal solution… because everyone does… then go ahead, but only after trying an oblique solution. If the correlations among the factors are important, choose oblique rotation.

Misconception 3: Minimum sample size for factor analysis is… (fill in the blanks based on your known thresholds).

There is no shortage of recommendations regarding the appropriate sample size to use when conducting a factor analysis. Suggested minimums for sample size include from 3 to 20 times the number of variables and absolute ranges from 100 to over 1,000. For the most part, there is little empirical evidence to support these recommendations.

Before you get lost in the sample thresholds, consider for your analysis two criteria: (a) communality levels and (b) the number for variables per factor.

Communality is the variance in each variable that is explained by the factors. Simulation studies (e.g. Hogarty et al., 2005) found that, with low levels of communality and three to four variables per factor, the sample size of at least 300 was needed if there were three factors, but a sample size of at least 500 was necessary if there were seven factors.

Misconception 4: The “Eigenvalues Greater Than One” rule is the best way of choosing the number of factors.

Eigenvalue (or characteristic value) is a statistic we use in factor analysis to indicate how much of the variation of the original group of variables is accounted for by a particular factor. The sum of the eigenvalues over all factors equals the total number of variables. So you can think of the units of an eigenvalue as “the variance in any one variable.”

A number of “eigenvalues greater than one” represent a theoretical lower bound for the number of components (but not common factors) that can (but not necessarily should) be extracted in the population.

Even though this method is a default method in many software packages, it has consistently been found to be inaccurate, and review articles are unanimous in recommending against its use.

My advice to novice researchers is to use the scree plot in conjunction with other methods (e.g. parallel analysis, minimum average partial and proportion of variance). The success of the combination of those methods depends on having theoretical rational and interpretability at the forefront.

All four misconceptions may result in biased results in applied factor analytic research. Fortunately, the solutions are usually straightforward, often involving following a series of simple steps that we will describe in our next workshop on Principal Component and Factor Analysis.

References

Hogarty, K. Y., Hines, C. V., Kromrey, J. D., Ferron, J. M., & Mumford, K. R. (2005). The quality of factor solutions in exploratory factor analysis: The influence of sample size, communality, and overdetermination. Educational and Psychological Measurement, 65(2), 202-226.

Principal Component Analysis
Summarize common variation in many variables... into just a few. Learn the 5 steps to conduct a Principal Component Analysis and the ways it differs from Factor Analysis.

Tagged With: common factor analysis, communality, EFA, eigenvalue, Exploratory Factor Analysis, oblique rotation, orthogonal rotation, PCA, principal axis factor analysis, principal component analysis, rotation, sample size, simple structure

Related Posts

  • In Factor Analysis, How Do We Decide Whether to Have Rotated or Unrotated Factors?
  • Can You Use Principal Component Analysis with a Training Set Test Set Model?
  • In Principal Component Analysis, Can Loadings Be Negative?
  • How To Calculate an Index Score from a Factor Analysis

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Please note that, due to the large number of comments submitted, any questions on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • February Member Training: Choosing the Best Statistical Analysis

Upcoming Workshops

  • Logistic Regression for Binary, Ordinal, and Multinomial Outcomes (May 2021)
  • Introduction to Generalized Linear Mixed Models (May 2021)

Read Our Book



Data Analysis with SPSS
(4th Edition)

by Stephen Sweet and
Karen Grace-Martin

Statistical Resources by Topic

  • Fundamental Statistics
  • Effect Size Statistics, Power, and Sample Size Calculations
  • Analysis of Variance and Covariance
  • Linear Regression
  • Complex Surveys & Sampling
  • Count Regression Models
  • Logistic Regression
  • Missing Data
  • Mixed and Multilevel Models
  • Principal Component Analysis and Factor Analysis
  • Structural Equation Modeling
  • Survival Analysis and Event History Analysis
  • Data Analysis Practice and Skills
  • R
  • SPSS
  • Stata

Copyright © 2008–2021 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.

SAVE & ACCEPT