• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • our programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • statistical resources
  • blog
  • about
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • contact
  • login

Regression models

Member Training: The Link Between ANOVA and Regression

by TAF Support  Leave a Comment

Stage 2If you’ve used much analysis of variance (ANOVA), you’ve probably heard that ANOVA is a special case of linear regression. Unless you’ve seen why, though, that may not make a lot of sense. After all, ANOVA compares means between categories, while regression predicts outcomes with numeric variables.ANOVA chart [Read more…] about Member Training: The Link Between ANOVA and Regression

Tagged With: ANOVA, linear model, linear regression

Related Posts

  • Member Training: Centering
  • Member Training: Using Excel to Graph Predicted Values from Regression Models
  • Member Training: Hierarchical Regressions
  • Member Training: Statistical Contrasts

Can Likert Scale Data ever be Continuous?

by Karen Grace-Martin  51 Comments

A very common question is whether it is legitimate to use Likert scale data in parametric statistical procedures that require interval data, such as Linear Regression, ANOVA, and Factor Analysis.

A typical Likert scale item has 5 to 11 points that indicate the degree of something. For example, it could measure agreement with a statement, such as 1=Strongly Disagree to 5=Strongly Agree. It can be a 1 to 5 scale, 0 to 10, etc. [Read more…] about Can Likert Scale Data ever be Continuous?

Tagged With: ANOVA, continuous variable, Factor Analysis, Likert Scale, linear regression, Model Assumptions, Nonparametric statistics

Related Posts

  • Beyond Median Splits: Meaningful Cut Points
  • Checking Assumptions in ANOVA and Linear Regression Models: The Distribution of Dependent Variables
  • Member Training: The Link Between ANOVA and Regression
  • Member Training: Centering

Member Training: Multinomial Logistic Regression

by TAF Support  Leave a Comment

Multinomial logistic regression is an important type of categorical data analysis. Specifically, it’s used when your response variable is nominal: more than two categories and not ordered.
[Read more…] about Member Training: Multinomial Logistic Regression

Tagged With: categorical variable, logistic regression, Multinomial Logistic Regression

Related Posts

  • Member Training: Using Excel to Graph Predicted Values from Regression Models
  • Member Training: Hierarchical Regressions
  • Member Training: Goodness of Fit Statistics
  • Member Training: Explaining Logistic Regression Results to Non-Researchers

Member Training: Centering

by TAF Support  Leave a Comment

Stage 2Centering variables is common practice in some areas, and rarely seen in others. That being the case, it isn’t always clear what are the reasons for centering variables. CenteringIs it only a matter of preference, or does centering variables help with analysis and interpretation? [Read more…] about Member Training: Centering

Tagged With: ANOVA, centering, linear regression

Related Posts

  • Member Training: The Link Between ANOVA and Regression
  • Member Training: Using Excel to Graph Predicted Values from Regression Models
  • Member Training: Hierarchical Regressions
  • Member Training: Statistical Contrasts

Member Training: Analyzing Likert Scale Data

by TAF Support  1 Comment

Is it really ok to treat Likert items as continuous? And can you just decide to combine Likert items to make a scale? Likert-type data is extremely common—and so are questions like these about how to analyze it appropriately. [Read more…] about Member Training: Analyzing Likert Scale Data

Tagged With: Correlation, data transformations, Kendall's tau-b, kruskal-wallis, Likert Scale, mann-whitney u test, Ordinal Logistic Regression, predictive models, Somer's D, Spearman correlation

Related Posts

  • When Linear Models Don’t Fit Your Data, Now What?
  • The Difference Between Association and Correlation
  • Member Training: Non-Parametric Analyses
  • Member Training: Types of Regression Models and When to Use Them

The Difference Between R-squared and Adjusted R-squared

by Karen Grace-Martin  4 Comments

When is it important to use adjusted R-squared instead of R-squared?

R², the the Coefficient of Determination, is one of the most useful and intuitive statistics we have in linear regression.Stage 2

It tells you how well the model predicts the outcome and has some nice properties. But it also has one big drawback.

[Read more…] about The Difference Between R-squared and Adjusted R-squared

Tagged With: Adjusted R-squared, Coefficient of determination, linear regression, Multiple Regression, R-squared

Related Posts

  • Confusing Statistical Term #9: Multiple Regression Model and Multivariate Regression Model
  • Member Training: Preparing to Use (and Interpret) a Linear Regression Model
  • What is Multicollinearity? A Visual Description
  • Member Training: The Link Between ANOVA and Regression

  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Interim pages omitted …
  • Go to page 39
  • Go to Next Page »

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: The Link Between ANOVA and Regression

Upcoming Workshops

    No Events

Upcoming Free Webinars

TBA

Quick links

Our Programs Statistical Resources Blog/News About Contact Log in

Contact

Upcoming

Free Webinars Membership Trainings Workshops

Privacy Policy

Search

Copyright © 2008–2023 The Analysis Factor, LLC.
All rights reserved.

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT