• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • Our Programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • About
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • Statistical Resources
  • Contact
  • Blog
  • Login

Poisson and Negative Binomial Regression Models

What is the Purpose of a Generalized Linear Mixed Model?

by Kim Love 1 Comment

If you are new to using generalized linear mixed effects models, or if you have heard of them but never used them, you might be wondering about the purpose of a GLMM.

Mixed effects models are useful when we have data with more than one source of random variability. For example, an outcome may be measured more than once on the same person (repeated measures taken over time).

When we do that we have to account for both within-person and across-person variability. A single measure of residual variance can’t account for both.

[Read more…] about What is the Purpose of a Generalized Linear Mixed Model?

Tagged With: generalized linear mixed model, random effect, Repeated Measures

Related Posts

  • How to Get SPSS GENLINMIXED Output Without the Model Viewer
  • Specifying a Random Intercept or Random Slope Model in SPSS GENLINMIXED
  • Mixed Models for Logistic Regression in SPSS
  • Member Training: Goodness of Fit Statistics

When to Use Logistic Regression for Percentages and Counts

by Karen Grace-Martin 4 Comments

One important yet difficult skill in statistics is choosing a type model for different data situations. One key consideration is the dependent variable.

For linear models, the dependent variable doesn’t have to be normally distributed, but it does have to be continuous, unbounded, and measured on an interval or ratio scale.

Percentages don’t fit these criteria. Yes, they’re continuous and ratio scale. The issue is the [Read more…] about When to Use Logistic Regression for Percentages and Counts

Tagged With: binomial, Count data, count model, dependent variable, events, logistic regression, Negative Binomial Regression, percentage data, Poisson Regression, trials

Related Posts

  • When Linear Models Don’t Fit Your Data, Now What?
  • Member Training: Count Models
  • Proportions as Dependent Variable in Regression–Which Type of Model?
  • Poisson Regression Analysis for Count Data

Poisson or Negative Binomial? Using Count Model Diagnostics to Select a Model

by Jeff Meyer 10 Comments

How do you choose between Poisson and negative binomial models for discrete count outcomes?

One key criterion is the relative value of the variance to the mean after accounting for the effect of the predictors. A previous article discussed the concept of a variance that is larger than the model assumes: overdispersion.

(Underdispersion is also possible, but much less common).

There are two ways to check for overdispersion: [Read more…] about Poisson or Negative Binomial? Using Count Model Diagnostics to Select a Model

Tagged With: count model, dispersion statistic, Model Fit, negative binomial, overdispersion, poisson, predicted count, residual plot

Related Posts

  • Overdispersion in Count Models: Fit the Model to the Data, Don’t Fit the Data to the Model
  • The Problem with Linear Regression for Count Data
  • The Importance of Including an Exposure Variable in Count Models
  • Analyzing Zero-Truncated Count Data: Length of Stay in the ICU for Flu Victims

Getting Accurate Predicted Counts When There Are No Zeros in the Data

by Jeff Meyer Leave a Comment

We previously examined why a linear regression and negative binomial regression were not viable models for predicting the expected length of stay in the hospital for people with the flu.  A linear regression model was not appropriate because our outcome variable, length of stay, was discrete and not continuous.

A negative binomial model wasn’t the proper choice because the minimum length of stay is not zero. The minimum length of stay is one day. Negative binomial and Poisson models can only be used on data where the observations’ outcome have the possibility of having a zero count.

We need to use a truncated negative binomial model to analyze the expected length of stay of people admitted to the hospital who have the flu. Calculating the expected length of stay is an easy task once we create our model. [Read more…] about Getting Accurate Predicted Counts When There Are No Zeros in the Data

Tagged With: conditional mean, Count data, incidence rate ratio, linear regression, Negative Binomial Regression, predicted count, truncated negative binomial model, Zero Truncated

Related Posts

  • The Importance of Including an Exposure Variable in Count Models
  • Count Models: Understanding the Log Link Function
  • The Problem with Linear Regression for Count Data
  • A Few Resources on Zero-Inflated Poisson Models

The Problem with Linear Regression for Count Data

by Jeff Meyer Leave a Comment

Imagine this scenario:

This year’s flu strain is very vigorous. The number of people checking in at hospitals is rapidly increasing. Hospitals are desperate to know if they have enough beds to handle those who need their help.

You have been asked to analyze a previous year’s hospitalization length of stay by people with the flu who had been admitted to the hospital. The predictors in your data set are age group, gender and race of those admitted. You also have an indicator that signifies whether the hospital was privately or publicly run.

[Read more…] about The Problem with Linear Regression for Count Data

Tagged With: Count data, count model, linear regression, negative binomial, Poisson Regression, predicted count, Truncated

Related Posts

  • The Importance of Including an Exposure Variable in Count Models
  • Analyzing Zero-Truncated Count Data: Length of Stay in the ICU for Flu Victims
  • Count Models: Understanding the Log Link Function
  • Poisson or Negative Binomial? Using Count Model Diagnostics to Select a Model

Member Training: Making Sense of Statistical Distributions

by guest contributer Leave a Comment

Many who work with statistics are already functionally familiar with the normal distribution, and maybe even the binomial distribution.

These common distributions are helpful in many applications, but what happens when they just don’t work?

This webinar will cover a number of statistical distributions, including the:

  • Poisson and negative binomial distributions (especially useful for count data)
  • Multinomial distribution (for responses with more than two categories)
  • Beta distribution (for continuous percentages)
  • Gamma distribution (for right-skewed continuous data)
  • Bernoulli and binomial distributions (for probabilities and proportions)
  • And more!

We’ll also explore the relationships among statistical distributions, including those you may already use, like the normal, t, chi-squared, and F distributions.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

[Read more…] about Member Training: Making Sense of Statistical Distributions

Tagged With: Bernoulli, beta, binomial, distributions, gamma, Multinomial, negative binomial, poisson, statistical distributions

Related Posts

  • Member Training: Logistic Regression for Count and Proportion Data
  • Member Training: A Gentle Introduction to Bootstrapping
  • When Linear Models Don’t Fit Your Data, Now What?
  • Poisson or Negative Binomial? Using Count Model Diagnostics to Select a Model

  • « Go to Previous Page
  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Go to page 4
  • Interim pages omitted …
  • Go to page 7
  • Go to Next Page »

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: A Gentle Introduction to Bootstrapping

Upcoming Free Webinars

Getting Started with R
3 Overlooked Strengths of Structural Equation Modeling
4 Critical Steps in Building Linear Regression Models

Upcoming Workshops

    No Events

Copyright © 2008–2022 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT