• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • About
    • Our Programs
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Guest Instructors
  • Membership
    • Statistically Speaking Membership Program
    • Login
  • Workshops
    • Online Workshops
    • Login
  • Consulting
    • Statistical Consulting Services
    • Login
  • Free Webinars
  • Contact
  • Login

Correlated Errors in Confirmatory Factor Analysis

by Jeff Meyer 2 Comments

Latent constructs, such as liberalism or conservatism, are theoretical and cannot be measured directly.

But we can use a set of questions on a scale, called indicators, to represent the construct together by combining them into a latent factor.

Often prior research has determined which indicators represent the latent construct. Prudent researchers will run a confirmatory factor analysis (CFA) to ensure the same indicators work in their sample.

You can run a CFA using either the statistical software’s “factor analysis” command or a structural equation model (SEM). There are several advantages to using SEM over the “factor analysis” command. The advantage we will look at is the ability to correlate error terms.

The first step in a CFA is to verify that the indicators have some commonality and are a good representation of the latent construct. We cannot simply add the scores of each indicator to create the latent factor.

Why? The indicators do not equally represent the latent construct. They all have their own “strength,” represented by its loading onto the latent factor. The loading is the variance of the indicator that is shared with the latent factor.

Not all the variance of an indicator is shared. This leftover, unshared variance is known as the unique variance. We consider unique variance as measurement error since it does not help in the measurement of the latent construct.

It is possible that part of the measurement error of one indicator is partially correlated with the measurement error of another indicator. This correlation can be due to pure randomness or it can be a result of something that influences both indicators.

If there is a legitimate reason for indicators’ error terms being related, the error terms can be “correlated” within a structural equation model. What are legitimate reasons?

According to Timothy Brown in his book “Confirmatory Factor Analysis for Applied Research”, some of the nonrandom measurement error that should be correlated can be a result of:

  • Acquiescent response:  a response bias caused by a person’s response agreeing with attitude statements regardless of the content of the question
  • Assessment methods: questionnaire, observer ratings
  • Reversed or similarly worded test items
  • Personal traits: reading disability or cognitive biases such as groupthink, which affect a respondent’s ability to answer a questionnaire truthfully

To determine which indicators’ error terms have a high correlation, we generate a modification index. The index produces a measurement of how much the model’s goodness of fit will improve if any two specific error terms are correlated.

Please note, you must be able to justify that the error terms can be correlated. For example, if the latent construct is derived from a survey, a review of the questions must be done to determine if the two questions are related to the same topic.

What is the advantage of correlating the error terms?

Correlating indicator error terms can improve the reliability of the latent construct’s scale, which can be measured via goodness of fit statistics. Unfortunately, correlating error terms is not possible when using a software’s “factor” command and can only be done within a structural equation model.

Jeff Meyer is a statistical consultant with The Analysis Factor, a stats mentor for Statistically Speaking membership, and a workshop instructor. Read more about Jeff here.

3 Overlooked Strengths of Structural Equation Modeling
Confirmatory factor analysis (CFA) and path models make up two core building blocks of SEM. Learn how these help you understand how SEM is used.

Tagged With: Confirmatory Factor Analysis, error term, Factor Analysis, latent variable, Model Fit

Related Posts

  • One of the Many Advantages to Running Confirmatory Factor Analysis with a Structural Equation Model
  • Measurement Invariance and Multiple Group Analysis
  • Why Adding Values on a Scale Can Lead to Measurement Error
  • First Steps in Structural Equation Modeling: Confirmatory Factor Analysis

Reader Interactions

Comments

  1. teresa martins says

    December 22, 2020 at 8:25 am

    Hi

    Are there any rules about the number of errors that we can correlate in the same dimension?

    Reply
    • Jeff Meyer says

      December 29, 2020 at 3:48 pm

      Hi Teresa,
      You should only correlate errors when you can truly justify it. It is similar to over fitting a regression model. You shouldn’t correlate errors simply to improve model fit.

      Here are two articles that I recommend you reading.

      The problem of allowing correlated errors in structural equation modeling: concerns and considerations, by Richard Hermida

      The Insidious Effects of Failing to Include Design-Driven Correlated Residuals in Latent-Variable Covariance Structure Analysis, by David Cole, Jeffrey Ciesla and James Steiger

      Jeff

      Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Please note that, due to the large number of comments submitted, any questions on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.

Primary Sidebar

Free Webinars

Effect Size Statistics on Tuesday, Feb 2nd

This Month’s Statistically Speaking Live Training

  • January Member Training: A Gentle Introduction To Random Slopes In Multilevel Models

Upcoming Workshops

  • Logistic Regression for Binary, Ordinal, and Multinomial Outcomes (May 2021)
  • Introduction to Generalized Linear Mixed Models (May 2021)

Read Our Book



Data Analysis with SPSS
(4th Edition)

by Stephen Sweet and
Karen Grace-Martin

Statistical Resources by Topic

  • Fundamental Statistics
  • Effect Size Statistics, Power, and Sample Size Calculations
  • Analysis of Variance and Covariance
  • Linear Regression
  • Complex Surveys & Sampling
  • Count Regression Models
  • Logistic Regression
  • Missing Data
  • Mixed and Multilevel Models
  • Principal Component Analysis and Factor Analysis
  • Structural Equation Modeling
  • Survival Analysis and Event History Analysis
  • Data Analysis Practice and Skills
  • R
  • SPSS
  • Stata

Copyright © 2008–2021 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.