• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • Our Programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • About
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • Statistical Resources
  • Contact
  • Blog
  • Login

Descriptives Before Model Building

by Jeff Meyer Leave a Comment

One approach to model building is to use all predictors that make theoretical sense in the first model. For example, a first model for determining birth weight could include mother’s age, education, marital status, race, weight gain during pregnancy and gestation period.

The main effects of this model show that a mother’s education level and marital status are insignificant.

Dropping marital status and running a new model we find that the mother’s education is now significant. We also see an improvement in the significance of the mother’s age from p=0.033 to p=0.004.

What if mother’s education level was dropped instead of marital status?

Marital status is now significant. Mother’s age has a lower p-value as well when compared to the model using both education and marital status. Why is there a conflict between the three models? Why the improvement with the statistical significance of mother’s age?

Examining a cross tabulation shows us the two predictors are not duplicates. If they were duplicates we would have zero counts in the bottom left and upper right cells. If one variable was the reverse code of the other variable the cells in the upper left and bottom right would have zero counts.

Perhaps the two predictors are providing the same information about birth weight. The tables below examine the mean birth weight per category for each predictor. The mean birth weights are almost identical for the two predictors.

The mean age for the two predictors is almost identical as well.

The summary statistics for this data shows the same mean birth weight for babies born to mothers with more than a high school education is the same as the mean birth weight for married mothers. The same is true when comparing unmarried mothers to mothers with no post-high school education.

Does theory suggest these relationships exist? If they run counter to theory the researcher should explain the conflicts found within the data.  

Running a series of descriptive statistics before running models can help identify issues such as these shown here. Otherwise, we might reach inaccurate conclusions due to an unusual sample.

Jeff Meyer is a statistical consultant with The Analysis Factor, a stats mentor for Statistically Speaking membership, and a workshop instructor. Read more about Jeff here.

Four Critical Steps in Building Linear Regression Models
While you’re worrying about which predictors to enter, you might be missing issues that have a big impact your analysis. This training will help you achieve more accurate results and a less-frustrating model building experience.

Tagged With: Model Building, predictive models, significant

Related Posts

  • Differences in Model Building Between Explanatory and Predictive Models
  • Overfitting in Regression Models
  • Model Building Strategies: Step Up and Top Down
  • 7 Practical Guidelines for Accurate Statistical Model Building

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Please note that, due to the large number of comments submitted, any questions on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Analyzing Pre-Post Data

Upcoming Free Webinars

Poisson and Negative Binomial Regression Models for Count Data

Upcoming Workshops

  • Analyzing Count Data: Poisson, Negative Binomial, and Other Essential Models (Jul 2022)
  • Introduction to Generalized Linear Mixed Models (Jul 2022)

Copyright © 2008–2022 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT