• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • Our Programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • About
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • Statistical Resources
  • Contact
  • Blog
  • Login

Why Generalized Linear Models Have No Error Term

by Karen Grace-Martin 1 Comment

Even if you’ve never heard the term Generalized Linear Model, you may have run one. It’s a term for a family of models that includes logistic and Poisson regression, among others.

It’s a small leap to generalized linear models, if you already understand linear models. Many, many concepts are the same in both types of models.

But one thing that’s perplexing to many is why generalized linear models have no error term, like linear models do.

Before we explore that, we need to see exactly what that error term is doing in a linear model.

The Error Term in a Linear Model

You’ll often see linear models written two different ways:

Linear models written two different ways

They’re not interchangeable, exactly, but they are both accurate. The former models the individual values of the outcome variable, Yi, as the sum of two parts. The first part is the fixed part of the model. It contains all the betas and Xs: β0+β1X1i. The second is the error term, εi.

The fixed part of the model adds up to a mean of Y, conditional on a value of X. The error term measures how far off that data point is from the conditional mean.

So another way of writing the model is to focus on only that fixed part of the model, and write it with the conditional mean only. This is what we see in the second equation. The concept of a conditional mean can seem strange, but it’s simply the mean of Y at each value of X.

The Generalized Linear Model

In a generalized linear model, both forms don’t work. We can’t model the values of Y directly in a linear form. In fact, the closest we can get is to model a function of the conditional mean:

Link function

This function is called the link function.

Every generalized linear model has a link function. Which function you use depends on the conditional distribution of Y. For example, a binomial-distributed Y uses a logistic link function and a Poisson-distributed Y uses a natural log.

Link functions for logistic and Poisson models

As you see, neither model has an error term. It’s simply because we’re modeling the mean, not the individual Y values.

Poisson and Negative Binomial Regression for Count Data
Learn when you need to use Poisson or Negative Binomial Regression in your analysis, how to interpret the results, and how they differ from similar models.

Tagged With: error term, generalized linear model, generalized linear models, logistic regression, Poisson Regression

Related Posts

  • Generalized Linear Models (GLMs) in R, Part 4: Options, Link Functions, and Interpretation
  • Poisson Regression Analysis for Count Data
  • Count Models: Understanding the Log Link Function
  • Member Training: Generalized Linear Models

Reader Interactions

Comments

  1. Temesgen Abuye says

    December 15, 2021 at 2:16 am

    It’s clearly explained.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Please note that, due to the large number of comments submitted, any questions on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Introduction to SPSS Software Tutorial

Upcoming Free Webinars

Poisson and Negative Binomial Regression Models for Count Data

Upcoming Workshops

  • Analyzing Count Data: Poisson, Negative Binomial, and Other Essential Models (Jul 2022)
  • Introduction to Generalized Linear Mixed Models (Jul 2022)

Copyright © 2008–2022 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT