• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • About
    • Our Programs
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Guest Instructors
  • Membership
    • Statistically Speaking Membership Program
    • Login
  • Workshops
    • Online Workshops
    • Login
  • Consulting
    • Statistical Consulting Services
    • Login
  • Free Webinars
  • Contact
  • Login

Member Training: Statistical Rules of Thumb: Essential Practices or Urban Myths?

by Karen Grace-Martin Leave a Comment

There are many rules of thumb in statistical analysis that make decision making and understanding results much easier.

Have you ever stopped to wonder where these rules came from, let alone if there is any scientific basis for them? Is there logic behind these rules, or is it propagation of urban legends?

In this webinar, we’ll explore and question the origins, justifications, and some of the most common rules of thumb in statistical analysis, like:

  • Is any sample greater than 30 really a “large” sample?
  • Is a Chi-square test invalid if we have fewer than 5 observations in a cell?
  • Does a value of .70 indicate good reliability for statistics like Kappa and Cronbach’s alpha?
  • Can we rely on Cohen’s cutoffs that indicate small, medium, and large effect sizes?
  • Do we really need 10 observations per independent variable in a regression model and why 10?

Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

Not a Member? Join!

About the Instructor

Audrey Schnell is a statistical consultant and trainer at The Analysis Factor.

Audrey first realized her love for research and, in particular, data analysis in a career move from clinical psychology to research in dementia. As the field of genetic epidemiology and statistical genetics blossomed, Audrey moved into this emerging field and analyzed data on a wide variety of common diseases believed to have a strong genetic component including hypertension, diabetes and psychiatric disorders. She helped develop software to analyze genetic data and taught classes in the US and Europe.

Audrey has worked for Case Western Reserve University, Cedars-Sinai, University of California at San Francisco and Johns Hopkins. Audrey has a Master’s Degree in Clinical Psychology and a Ph.D. in Epidemiology and Biostatistics.

Not a Member Yet?

It’s never too early to set yourself up for successful analysis with support and training from expert statisticians. Just head over and sign up for Statistically Speaking. You'll get access to this training webinar and 85+ other stats trainings — plus the expert guidance you need to progress with live Q&A sessions and an ask-a-mentor forum.

 

Tagged With: effect size, reliability, results, rules of thumb, sample size, Statistical analysis

Related Posts

  • Member Training: Interpretation of Effect Size Statistics
  • Member Training: Determining Levels of Measurement: What Lies Beneath the Surface
  • Member Training: Power Analysis and Sample Size Determination Using Simulation
  • Member Training: The Fundamentals of Sample Size Calculations

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Please note that, due to the large number of comments submitted, any questions on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • January Member Training: A Gentle Introduction To Random Slopes In Multilevel Models

Upcoming Workshops

  • Logistic Regression for Binary, Ordinal, and Multinomial Outcomes (May 2021)
  • Introduction to Generalized Linear Mixed Models (May 2021)

Read Our Book



Data Analysis with SPSS
(4th Edition)

by Stephen Sweet and
Karen Grace-Martin

Statistical Resources by Topic

  • Fundamental Statistics
  • Effect Size Statistics, Power, and Sample Size Calculations
  • Analysis of Variance and Covariance
  • Linear Regression
  • Complex Surveys & Sampling
  • Count Regression Models
  • Logistic Regression
  • Missing Data
  • Mixed and Multilevel Models
  • Principal Component Analysis and Factor Analysis
  • Structural Equation Modeling
  • Survival Analysis and Event History Analysis
  • Data Analysis Practice and Skills
  • R
  • SPSS
  • Stata

Copyright © 2008–2021 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.