• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • Our Programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • About
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • Statistical Resources
  • Contact
  • Blog
  • Login

Parametric or Semi-Parametric Models in Survival Analysis?

by guest contributer Leave a Comment

It was Casey Stengel who offered the sage advice, “If you come to a fork in the road, take it.”

When you need to fit a regression model to survival data, you have to take a fork in the road. One road asks you to make a distributional assumption about your data and the other does not.

Parametric Survival Analysis Models

Parametric models for survival data don’t work well with the normal distribution. The normal distribution can have any value, even negative ones.

Parametric survival analysis models typically require a non-negative distribution, because if you have negative survival times in your study, it is a sign that the zombie apocalypse has started (Wheatley-Price 2012).

The distributions that work well for survival data include the exponential, Weibull, gamma, and lognormal distributions among others.

Which distribution you choose will affect the shape of the model’s hazard function. You can choose the one that best matches your a priori beliefs about the hazard function or you can compare different parametric models and choose among them using a criterion like AIC.

Having to choose a reasonable distribution is the biggest challenge in running parametric models.

Semi-Parametric Survival Analysis Model: Cox Regression

The alternative fork estimates the hazard function from the data. This approach is referred to as a semi-parametric approach because while the hazard function is estimated non-parametrically, the functional form of the covariates is parametric.

The semi-parametric model relies on some very clever partial likelihood calculations by Sir David Cox in 1972 and the method is often called Cox regression in his honor. It is also often referred to as proportional hazards regression to highlight a major assumption of this model.

Cox regression is a much more popular choice than parametric regression, because the nonparametric estimate of the hazard function offers you much greater flexibility than most parametric approaches.

Nevertheless, a parametric model, if it is the correct parametric model, does offer some advantages.

A parametric model will provide somewhat greater efficiency, because you are estimating fewer parameters. It also provides you with the ability to extrapolate beyond the range of the data. Finally, if the parametric model matches some underlying mechanism associated with your data, you end up with more relevant interpretations of your model.

References: Wheatley-Price P, Hutton B, Clemons M. The Mayan Doomsday’s effect on survival outcomes in clinical trials. CMAJ. 2012 Dec 11; 184(18): 2021–2022. doi: 10.1503/cmaj.121616.

Introduction to Survival Analysis
Learn the key tools necessary to learn Survival Analysis in this brief introduction to censoring, graphing, and tests used in analyzing time-to-event data.

Tagged With: cox, distributions, exponential, gamma, hazard function, lognormal, parametric models, regression models, semi-parametric, survival data, Weibull

Related Posts

  • Interpreting the Shapes of Hazard Functions in Survival Analysis
  • What Is a Hazard Function in Survival Analysis?
  • Six Types of Survival Analysis and Challenges in Learning Them
  • The Proportional Hazard Assumption in Cox Regression

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Please note that, due to the large number of comments submitted, any questions on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Assumptions of Linear Models

Upcoming Free Webinars

The Pathway: Steps for Staying Out of the Weeds in any Data Analysis

Upcoming Workshops

  • Analyzing Count Data: Poisson, Negative Binomial, and Other Essential Models (Jul 2022)
  • Introduction to Generalized Linear Mixed Models (Jul 2022)

Copyright © 2008–2022 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT