
Linear Regression Analysis – 3 Common Causes of Multicollinearity and What Do to About Them

Last week I had the pleasure of teaching a webinar on Interpreting Regression Coefficients. We walked through the output of a somewhat tricky regression model—it included two dummy-coded categorical variables, a covariate, and a few interactions.
As always seems to happen, our audience asked an amazing number of great questions. (Seriously, I’ve had multiple guest instructors compliment me on our audience and their thoughtful questions.)
We had so many that although I spent about 40 minutes answering [Read more…] about Your Questions Answered from the Interpreting Regression Coefficients Webinar
Sometimes what is most tricky about understanding your regression output is knowing exactly what your software is presenting to you.
Here’s a great example of what looks like two completely different model results from SPSS and Stata that in reality, agree.
I ran a linear model regressing “physical composite score” on education and “mental composite score”.
The outcome variable, physical composite score, is a measurement of one’s physical well-being. The predictor “education” is categorical with four categories. The other predictor, mental composite score, is continuous and measures one’s mental well-being.
I am interested in determining whether the association between physical composite score and mental composite score is different among the four levels of education. To determine this I included an interaction between mental composite score and education.
Here is the result of the regression using SPSS:
This free, one-hour webinar is part of our regular Craft of Statistical Analysis series. In it, we will introduce and demonstrate two of the core concepts of mixed modeling—the random intercept and the random slope.
Most scientific fields now recognize the extraordinary usefulness of mixed models, but they’re a tough nut to crack for someone who didn’t receive training in their methodology.
But it turns out that mixed models are actually an extension of linear models. If you have a good foundation in linear models, the extension to mixed models is more of a step than a leap. (Okay, a large step, but still).
You’ll learn what random intercepts and slopes mean, what they do, and how to decide if one or both are needed. It’s the first step in understanding mixed modeling.
Date: Friday, August 21, 2015
Time: 12pm EDT (New York time)
Cost: Free
***Note: This webinar has already taken place. Sign up below to get access to the video recording of the webinar.
Stata allows you to describe, graph, manipulate and analyze your data in countless ways. But at times (many times) it can be very frustrating trying to create even the simplest results. Join us and learn how to reduce your future frustrations.
This one hour demonstration is for new and intermediate users of Stata. If you’re a beginner, the drop down commands can be extremely daunting.
If you’re an intermediate user and not constantly using Stata, it’s impossible to remember which commands generate the results you are looking to create.
This webinar, by guest presenter Jeff Meyer, will give you five actionable tips (and examples you can re-use) that will make your next analysis in Stata much simpler.
We’ll explore:
Date: Wednesday, July 29, 2015
Time: 4pm EDT (New York time)
Cost: Free
***Note: This webinar has already taken place. Sign up below to get access to the video recording of the webinar.
Jeff Meyer is a statistical consultant with The Analysis Factor, a stats mentor for Statistically Speaking membership, and a workshop instructor. Read more about Jeff here.Our next free webinar is titled: “Random Intercept and Random Slope Models” and is coming up in August
Why does ANOVA give main effects in the presence of interactions, but Regression gives marginal effects?
What are the advantages and disadvantages of dummy coding and effect coding? When does it make sense to use one or the other?
How does each one work, really?
In this webinar, we’re going to go step-by-step through a few examples of how dummy and effect coding each tell you different information about the effects of categorical variables, and therefore which one you want in each situation.
Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.
Karen Grace-Martin helps statistics practitioners gain an intuitive understanding of how statistics is applied to real data in research studies.
She has guided and trained researchers through their statistical analysis for over 15 years as a statistical consultant at Cornell University and through The Analysis Factor. She has master’s degrees in both applied statistics and social psychology and is an expert in SPSS and SAS.
You'll get access to this training webinar, 100+ other stats trainings, a pathway to work through the trainings that you need — plus the expert guidance you need to build statistical skill with live Q&A sessions and an ask-a-mentor forum.