• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • our programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • statistical resources
  • blog
  • about
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • contact
  • login

dummy coding

Linear Regression Analysis – 3 Common Causes of Multicollinearity and What Do to About Them

by Karen Grace-Martin  1 Comment

Multicollinearity in regression is one of those issues that strikes fear into the hearts of researchers. You’ve heard about its dangers in statistics Stage 2classes, and colleagues and journal reviews question your results because of it. But there are really only a few causes of multicollinearity. Let’s explore them.Multicollinearity is simply redundancy in the information contained in predictor variables. If the redundancy is moderate, [Read more…] about Linear Regression Analysis – 3 Common Causes of Multicollinearity and What Do to About Them

Tagged With: dummy coding, interpreting regression coefficients, Multicollinearity, principal component analysis

Related Posts

  • Making Dummy Codes Easy to Keep Track of
  • Simplifying a Categorical Predictor in Regression Models
  • What is Multicollinearity? A Visual Description
  • Your Questions Answered from the Interpreting Regression Coefficients Webinar

Your Questions Answered from the Interpreting Regression Coefficients Webinar

by Karen Grace-Martin  Leave a Comment

Last week I had the pleasure of teaching a webinar on Interpreting Regression Coefficients. We walked through the output of a somewhat tricky regression model—it included two dummy-coded categorical variables, a covariate, and a few interactions.

As always seems to happen, our audience asked an amazing number of great questions. (Seriously, I’ve had multiple guest instructors compliment me on our audience and their thoughtful questions.)

We had so many that although I spent about 40 minutes answering [Read more…] about Your Questions Answered from the Interpreting Regression Coefficients Webinar

Tagged With: dummy coding, dummy variable, effect size, eta-square, Interpreting Interactions, interpreting regression coefficients, Reference Group, spotlight analysis, statistical significance

Related Posts

  • Using Marginal Means to Explain an Interaction to a Non-Statistical Audience
  • Interpreting Interactions in Linear Regression: When SPSS and Stata Disagree, Which is Right?
  • About Dummy Variables in SPSS Analysis
  • Interpreting (Even Tricky) Regression Coefficients – A Quiz

Interpreting Interactions in Linear Regression: When SPSS and Stata Disagree, Which is Right?

by Jeff Meyer  Leave a Comment

Sometimes what is most tricky about understanding your regression output is knowing exactly what your software is presenting to you.

Here’s a great example of what looks like two completely different model results from SPSS and Stata that in reality, agree.

The Model

I ran a linear model regressing “physical composite score” on education and “mental composite score”.

The outcome variable, physical composite score, is a measurement of one’s physical well-being.   The predictor “education” is categorical with four categories.  The other predictor, mental composite score, is continuous and measures one’s mental well-being.

I am interested in determining whether the association between physical composite score and mental composite score is different among the four levels of education. To determine this I included an interaction between mental composite score and education.

The SPSS Regression Output

Here is the result of the regression using SPSS:

[Read more…] about Interpreting Interactions in Linear Regression: When SPSS and Stata Disagree, Which is Right?

Tagged With: dummy coding, Interactions in Regression, Interpreting Interactions, interpreting regression coefficients, slopes

Related Posts

  • Your Questions Answered from the Interpreting Regression Coefficients Webinar
  • SPSS GLM or Regression? When to use each
  • Dummy Coding in SPSS GLM–More on Fixed Factors, Covariates, and Reference Groups, Part 1
  • Interpreting Lower Order Coefficients When the Model Contains an Interaction

Random Intercept and Random Slope Models

by Karen Grace-Martin  2 Comments

This free, one-hour webinar is part of our regular Craft of Statistical Analysis series. In it, we will introduce and demonstrate two of the core concepts of mixed modeling—the random intercept and the random slope.

Most scientific fields now recognize the extraordinary usefulness of mixed models, but they’re a tough nut to crack for someone who didn’t receive training in their methodology.

But it turns out that mixed models are actually an extension of linear models. If you have a good foundation in linear models, the extension to mixed models is more of a step than a leap. (Okay, a large step, but still).

You’ll learn what random intercepts and slopes mean, what they do, and how to decide if one or both are needed. It’s the first step in understanding mixed modeling.

Date: Friday, August 21, 2015
Time:
12pm EDT (New York time)
Cost:
Free

***Note: This webinar has already taken place. Sign up below to get access to the video recording of the webinar.

Tagged With: dummy coding, macros, Stata

Related Posts

  • Free May Craft of Statistical Analysis Webinar: Unlocking the Power of Stata’s Macros and Loops
  • Five Tips and Tricks: How to Make Stata Easier to Use
  • Free December COSA Webinar: How to Benefit from Stata’s Bountiful Help Resources
  • Macros in Stata, Why and How to Use Them

Five Tips and Tricks: How to Make Stata Easier to Use

by Jeff Meyer  3 Comments

Stata allows you to describe, graph, manipulate and analyze your data in countless ways. But at times (many times) it can be very frustrating trying to create even the simplest results. Join us and learn how to reduce your future frustrations.

This one hour demonstration is for new and intermediate users of Stata. If you’re a beginner, the drop down commands can be extremely daunting.

If you’re an intermediate user and not constantly using Stata, it’s impossible to remember which commands generate the results you are looking to create.

This webinar, by guest presenter Jeff Meyer, will give you five actionable tips (and examples you can re-use) that will make your next analysis in Stata much simpler.

We’ll explore:

  • Save time with a do-file to create the table you want exactly as you want.
  • A few methods (some easier than others) to create dummy variables out of a categorical variable with several categories
  • At least three ways to insert a table into a document
  • Quickly alter the looks of your graphs through the use of macros
  • How to aggregate data to the group level based on a number of parameters

Date: Wednesday, July 29, 2015
Time:
4pm EDT (New York time)
Cost:
Free

 

***Note: This webinar has already taken place. Sign up below to get access to the video recording of the webinar.

Statistically Speaking members can access this recording from the Analysis Toolbox Resources page at the Programs Center without signing up.

 

Our next free webinar is titled: “Random Intercept and Random Slope Models” and is coming up in August

Jeff Meyer is a statistical consultant with The Analysis Factor, a stats mentor for Statistically Speaking membership, and a workshop instructor. Read more about Jeff here.

Tagged With: dummy coding, macros, Stata

Related Posts

  • Random Intercept and Random Slope Models
  • Free May Craft of Statistical Analysis Webinar: Unlocking the Power of Stata’s Macros and Loops
  • Tricks for Using Word to Make Statistical Syntax Easier
  • Using the Same Sample for Different Models in Stata

Member Training: Dummy and Effect Coding

by Karen Grace-Martin  2 Comments

Why does ANOVA give main effects in the presence of interactions, but Regression gives marginal effects?Stage 2

What are the advantages and disadvantages of dummy coding and effect coding? When does it make sense to use one or the other?

How does each one work, really?

In this webinar, we’re going to go step-by-step through a few examples of how dummy and effect coding each tell you different information about the effects of categorical variables, and therefore which one you want in each situation.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

Not a Member? Join!

About the Instructor

Karen Grace-Martin helps statistics practitioners gain an intuitive understanding of how statistics is applied to real data in research studies.

She has guided and trained researchers through their statistical analysis for over 15 years as a statistical consultant at Cornell University and through The Analysis Factor. She has master’s degrees in both applied statistics and social psychology and is an expert in SPSS and SAS.

Not a Member Yet?
It’s never too early to set yourself up for successful analysis with support and training from expert statisticians. Just head over and sign up for Statistically Speaking.

You'll get access to this training webinar, 100+ other stats trainings, a pathway to work through the trainings that you need — plus the expert guidance you need to build statistical skill with live Q&A sessions and an ask-a-mentor forum.

Tagged With: categorical variable, dummy coding, effect coding

Related Posts

  • Member Training: Multinomial Logistic Regression
  • Member Training: Centering
  • Member Training: Missing Data
  • Member Training: Elements of Experimental Design

  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Go to page 4
  • Go to Next Page »

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Multinomial Logistic Regression

Upcoming Workshops

    No Events

Upcoming Free Webinars

TBA

Quick links

Our Programs Statistical Resources Blog/News About Contact Log in

Contact

Upcoming

Free Webinars Membership Trainings Workshops

Privacy Policy

Search

Copyright © 2008–2023 The Analysis Factor, LLC.
All rights reserved.

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT