• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • our programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • statistical resources
  • blog
  • about
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • contact
  • login

Truncated

When Linear Models Don’t Fit Your Data, Now What?

by Karen Grace-Martin  32 Comments

When your dependent variable is not continuous, unbounded, and measured on an interval or ratio scale, linear models don’t fit. The data just will not meet the assumptions of linear models. But there’s good news, other models exist for many types of dependent variables.

Today I’m going to go into more detail about 6 common types of dependent variables that are either discrete, bounded, or measured on a nominal or ordinal scale and the tests that work for them instead. Some are all of these.

[Read more…] about When Linear Models Don’t Fit Your Data, Now What?

Tagged With: binary variable, categorical variable, Censored, dependent variable, Discrete Counts, Multinomial, ordinal variable, Poisson Regression, Proportion, Proportional Odds Model, regression models, Truncated, Zero Inflated

Related Posts

  • 6 Types of Dependent Variables that will Never Meet the Linear Model Normality Assumption
  • Member Training: Types of Regression Models and When to Use Them
  • When to Check Model Assumptions
  • Proportions as Dependent Variable in Regression–Which Type of Model?

Statistical Models for Truncated and Censored Data

by Jeff Meyer  1 Comment

by Jeff Meyer

As mentioned in a previous post, there is a significant difference between truncated and censored data.

Truncated data eliminates observations from an analysis based on a maximum and/or minimum value for a variable.

Censored data has limits on the maximum and/or minimum value for a variable but includes all observations in the analysis.

As a result, the models for analysis of these data are different. [Read more…] about Statistical Models for Truncated and Censored Data

Tagged With: binomial, Censored, model, probit, Regression, Tobit Regression, Truncated

Related Posts

  • 6 Types of Dependent Variables that will Never Meet the Linear Model Normality Assumption
  • When Linear Models Don’t Fit Your Data, Now What?
  • Member Training: Working with Truncated and Censored Data
  • Member Training: Transformations & Nonlinear Effects in Linear Models

The Problem with Linear Regression for Count Data

by Jeff Meyer  Leave a Comment

Imagine this scenario:

This year’s flu strain is very vigorous. The number of people checking in at hospitals is rapidly increasing. Hospitals are desperate to know if they have enough beds to handle those who need their help.

You have been asked to analyze a previous year’s hospitalization length of stay by people with the flu who had been admitted to the hospital. The predictors in your data set are age group, gender and race of those admitted. You also have an indicator that signifies whether the hospital was privately or publicly run.

[Read more…] about The Problem with Linear Regression for Count Data

Tagged With: Count data, count model, linear regression, negative binomial, Poisson Regression, predicted count, Truncated

Related Posts

  • The Importance of Including an Exposure Variable in Count Models
  • Analyzing Zero-Truncated Count Data: Length of Stay in the ICU for Flu Victims
  • Count Models: Understanding the Log Link Function
  • Poisson or Negative Binomial? Using Count Model Diagnostics to Select a Model

Analyzing Zero-Truncated Count Data: Length of Stay in the ICU for Flu Victims

by Jeff Meyer  3 Comments

by Jeff Meyer

It’s that time of year: flu season.

Let’s imagine you have been asked to determine the factors that will help a hospital determine the length of stay in the intensive care unit (ICU) once a patient is admitted.

The hospital tells you that once the patient is admitted to the ICU, he or she has a day count of one. As soon as they spend 24 hours plus 1 minute, they have stayed an additional day.

Clearly this is count data. There are no fractions, only whole numbers.

To help us explore this analysis, let’s look at real data from the State of Illinois. We know the patients’ ages, gender, race and type of hospital (state vs. private).

A partial frequency distribution looks like this: [Read more…] about Analyzing Zero-Truncated Count Data: Length of Stay in the ICU for Flu Victims

Tagged With: Count data, linear regression, negative binomial, poisson, predictors, Truncated

Related Posts

  • The Problem with Linear Regression for Count Data
  • The Importance of Including an Exposure Variable in Count Models
  • Poisson or Negative Binomial? Using Count Model Diagnostics to Select a Model
  • Getting Accurate Predicted Counts When There Are No Zeros in the Data

The Difference Between Truncated and Censored Data

by Jeff Meyer  1 Comment

by Jeff MeyerStage 2

A normally distributed variable can have values without limits in both directions on the number line. While most variables have practical limitations, most of the time, this assumption of infinite tails is quite reasonable as there is no real boundary.

Air temperature is an example of a variable that can extend far from its mean in either direction.

But for other variables, there is a practical beginning or ending point. Age is left-bounded. It starts at zero.

The number of wins that a baseball team can have in a season is bounded on the upper end by the number of games played in a season.

The temperature of water as a liquid is bound on the low end at zero degrees Celsius and on the high end at 100 degrees Celsius.

There are two types of bounded data that have direct implications for how to work with them in analysis: censored and truncated data. Understanding the difference is a critical first step when working with these variables.

 

Understanding Censored and Truncated Data

Censored Data

Censored data have unknown values beyond a bound on either end of the number line or both. It can exist by design. When the data is observed and reported at the boundary, the researcher has made the decision to restrict the range of the scale.

An example of a lower censoring boundary is the recording of pollutants in our water. The researcher may not care about (or instruments may not be able to detect) the level of pollutants if it falls below a certain threshold (e.g., .005 parts per million). In this case, any pollutant level below .005 ppm is reported as “<.005 ppm.”

An upper censor could be placed on temperature in a science experiment. Once the temperature goes above x degrees the scientist doesn’t care. So s/he measures it as “>x”.

Data can be censored on both ends as well. Income could be reported as “<$20,000” if the actual is below $20,000 and reported as “ >$200,000” if above that level.

There are potential censored data not created by design. Test scores or college admission tests are examples of censored data not created by design, but by the actual bounds.  A student cannot score above 100% correct no matter how much better they know the topic than other students. These are bounded by actual results.

Truncated Data

Truncation occurs when values beyond a boundary are either excluded when gathered or excluded when analyzed. For example, if someone conducting a survey asks you if you make more than $100,000, and you answer “yes” and the surveyor says “thanks but no thanks”, then you’ve been truncated.

Or if a number of arrests is measured from police records, then everyone with 0 arrests will, by definition, be excluded from the sample.

Excluding cases from a data set at a preset boundary has the same effect. Creating models on middle income values would involve truncating income above and below specific amounts.

So to summarize, data are censored when we have partial information about the value of a variable—we know it is beyond some boundary, but not how far above or below it.

In contrast, data are truncated when the data set does not include observations in the analysis that are beyond a boundary value. Having a value beyond the boundary eliminates that individual from being in the analysis.

In truncation, it’s not just the variable of interest that we don’t have full data on. It’s all the data from that case.

Jeff Meyer is a statistical consultant with The Analysis Factor, a stats mentor for Statistically Speaking membership, and a workshop instructor. Read more about Jeff here.

Tagged With: bounded, Censored, Statistical analysis, Truncated

Related Posts

  • When Linear Models Don’t Fit Your Data, Now What?
  • A Strategy for Converting a Continuous to a Categorical Predictor
  • Statistical Models for Truncated and Censored Data
  • The Fundamental Difference Between Principal Component Analysis and Factor Analysis

Member Training: Working with Truncated and Censored Data

by Jeff Meyer  1 Comment

Statistically speaking, when we see a continuous outcome variable we often worry about outliers and how these extreme observations can impact our model.

But have you ever had an outcome variable with no outliers because there was a boundary value at which accurate measurements couldn’t be or weren’t recorded?

Examples include:

  • Income data where all values above $100,000 are recorded as $100k or greater
  • Soil toxicity ratings where the device cannot measure values below 1 ppm
  • Number of arrests where there are no zeros because the data set came from police records where all participants had at least one arrest

These are all examples of data that are truncated or censored.  Failing to incorporate the truncation or censoring will result in biased results.

This webinar will discuss what truncated and censored data are and how to identify them.

There are several different models that are used with this type of data. We will go over each model and discuss which type of data is appropriate for each model.

We will then compare the results of models that account for truncated or censored data to those that do not. From this you will see what possible impact the wrong model choice has on the results.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

[Read more…] about Member Training: Working with Truncated and Censored Data

Tagged With: Censored, continuous variable, outliers, Truncated

Related Posts

  • When Linear Models Don’t Fit Your Data, Now What?
  • A Strategy for Converting a Continuous to a Categorical Predictor
  • Statistical Models for Truncated and Censored Data
  • Member Training: The LASSO Regression Model

  • Go to page 1
  • Go to page 2
  • Go to Next Page »

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Multinomial Logistic Regression

Upcoming Workshops

    No Events

Upcoming Free Webinars

TBA

Quick links

Our Programs Statistical Resources Blog/News About Contact Log in

Contact

Upcoming

Free Webinars Membership Trainings Workshops

Privacy Policy

Search

Copyright © 2008–2023 The Analysis Factor, LLC.
All rights reserved.

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT