• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • Our Programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • About
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • Statistical Resources
  • Contact
  • Blog
  • Login

Truncated

Statistical Models for Truncated and Censored Data

by Jeff Meyer 1 Comment

by Jeff Meyer

As mentioned in a previous post, there is a significant difference between truncated and censored data.

Truncated data eliminates observations from an analysis based on a maximum and/or minimum value for a variable.

Censored data has limits on the maximum and/or minimum value for a variable but includes all observations in the analysis.

As a result, the models for analysis of these data are different. [Read more…] about Statistical Models for Truncated and Censored Data

Tagged With: binomial, Censored, model, probit, Regression, Tobit Regression, Truncated

Related Posts

  • 6 Types of Dependent Variables that will Never Meet the Linear Model Normality Assumption
  • Member Training: Working with Truncated and Censored Data
  • Member Training: Transformations & Nonlinear Effects in Linear Models
  • Spotlight Analysis for Interpreting Interactions

The Problem with Linear Regression for Count Data

by Jeff Meyer Leave a Comment

Imagine this scenario:

This year’s flu strain is very vigorous. The number of people checking in at hospitals is rapidly increasing. Hospitals are desperate to know if they have enough beds to handle those who need their help.

You have been asked to analyze a previous year’s hospitalization length of stay by people with the flu who had been admitted to the hospital. The predictors in your data set are age group, gender and race of those admitted. You also have an indicator that signifies whether the hospital was privately or publicly run.

[Read more…] about The Problem with Linear Regression for Count Data

Tagged With: Count data, count model, linear regression, negative binomial, Poisson Regression, predicted count, Truncated

Related Posts

  • The Importance of Including an Exposure Variable in Count Models
  • Analyzing Zero-Truncated Count Data: Length of Stay in the ICU for Flu Victims
  • Count Models: Understanding the Log Link Function
  • Poisson or Negative Binomial? Using Count Model Diagnostics to Select a Model

Analyzing Zero-Truncated Count Data: Length of Stay in the ICU for Flu Victims

by Jeff Meyer 3 Comments

by Jeff Meyer

It’s that time of year: flu season.

Let’s imagine you have been asked to determine the factors that will help a hospital determine the length of stay in the intensive care unit (ICU) once a patient is admitted.

The hospital tells you that once the patient is admitted to the ICU, he or she has a day count of one. As soon as they spend 24 hours plus 1 minute, they have stayed an additional day.

Clearly this is count data. There are no fractions, only whole numbers.

To help us explore this analysis, let’s look at real data from the State of Illinois. We know the patients’ ages, gender, race and type of hospital (state vs. private).

A partial frequency distribution looks like this: [Read more…] about Analyzing Zero-Truncated Count Data: Length of Stay in the ICU for Flu Victims

Tagged With: Count data, linear regression, negative binomial, poisson, predictors, Truncated

Related Posts

  • The Problem with Linear Regression for Count Data
  • The Importance of Including an Exposure Variable in Count Models
  • Poisson or Negative Binomial? Using Count Model Diagnostics to Select a Model
  • Getting Accurate Predicted Counts When There Are No Zeros in the Data

The Difference Between Truncated and Censored Data

by Jeff Meyer 1 Comment

by Jeff Meyer

A normally distributed variable can have values without limits in both directions on the number line. While most variables have practical limitations, most of the time, this assumption of infinite tails is quite reasonable as there is no real boundary.

Air temperature is an example of a variable that can extend far from its mean in either direction.

But for other variables, there is a practical beginning or ending point. Age is left-bounded. It starts at zero.

The number of wins that a baseball team can have in a season is bounded on the upper end by the number of games played in a season.

The temperature of water as a liquid is bound on the low end at zero degrees Celsius and on the high end at 100 degrees Celsius.

There are two types of bounded data that have direct implications for how to work with them in analysis: censored and truncated data. Understanding the difference is a critical first step when working with these variables.

[Read more…] about The Difference Between Truncated and Censored Data

Tagged With: bounded, Censored, Statistical analysis, Truncated

Related Posts

  • A Strategy for Converting a Continuous to a Categorical Predictor
  • Statistical Models for Truncated and Censored Data
  • The Fundamental Difference Between Principal Component Analysis and Factor Analysis
  • Member Training: Working with Truncated and Censored Data

Member Training: Working with Truncated and Censored Data

by Jeff Meyer 1 Comment

Statistically speaking, when we see a continuous outcome variable we often worry about outliers and how these extreme observations can impact our model.

But have you ever had an outcome variable with no outliers because there was a boundary value at which accurate measurements couldn’t be or weren’t recorded?

Examples include:

  • Income data where all values above $100,000 are recorded as $100k or greater
  • Soil toxicity ratings where the device cannot measure values below 1 ppm
  • Number of arrests where there are no zeros because the data set came from police records where all participants had at least one arrest

These are all examples of data that are truncated or censored.  Failing to incorporate the truncation or censoring will result in biased results.

This webinar will discuss what truncated and censored data are and how to identify them.

There are several different models that are used with this type of data. We will go over each model and discuss which type of data is appropriate for each model.

We will then compare the results of models that account for truncated or censored data to those that do not. From this you will see what possible impact the wrong model choice has on the results.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

[Read more…] about Member Training: Working with Truncated and Censored Data

Tagged With: Censored, continuous variable, outliers, Truncated

Related Posts

  • A Strategy for Converting a Continuous to a Categorical Predictor
  • Statistical Models for Truncated and Censored Data
  • Member Training: The LASSO Regression Model
  • Member Training: Types of Regression Models and When to Use Them

Issues with Truncated Data

by Jeff Meyer Leave a Comment

by Jeff Meyer

In a previous post we explored bounded variables and the difference between truncated and censored. Can we ignore the fact that a variable is bounded and just run our analysis as if the data wasn’t bounded? [Read more…] about Issues with Truncated Data

Tagged With: bounded, count, Truncated, unbounded

Related Posts

  • The Importance of Including an Exposure Variable in Count Models
  • Count Models: Understanding the Log Link Function
  • Count vs. Continuous Variables: Differences Under the Hood
  • Getting Accurate Predicted Counts When There Are No Zeros in the Data

  • Go to page 1
  • Go to page 2
  • Go to Next Page »

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Introduction to SPSS Software Tutorial

Upcoming Free Webinars

Poisson and Negative Binomial Regression Models for Count Data

Upcoming Workshops

  • Analyzing Count Data: Poisson, Negative Binomial, and Other Essential Models (Jul 2022)
  • Introduction to Generalized Linear Mixed Models (Jul 2022)

Copyright © 2008–2022 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT