OptinMon

How to Get Standardized Regression Coefficients When Your Software Doesn’t Want To Give Them To You

October 26th, 2012 by

Standardized regression coefficients remove the unit of measurement of predictor and outcome variables.  They are sometimes called betas, but I don’t like to use that term because there are too many other, and too many related, concepts that are also called beta.

There are many good reasons to report them:

  • They serve as standardized effect size statistics.
  • They allow you to compare the relative effects of predictors measured on different scales.
  • They make journal editors and committee members happy in fields where they are commonly reported. (more…)

Explaining Logistic Regression Results to Non-Statistical Audiences

October 24th, 2012 by

I received an e-mail from a researcher in Canada that asked about communicating logistic regression results to non-researchers. It was an important question, and there are a number of parts to it.

With the asker’s permission, I am going to address it here.

To give you the full context, she explained in a follow-up email that she is communicating to a clinical audience who will be using the results to make clinical decisions. They need to understand the size of an effect that an intervention will provide.  She refers to an output I presented in my webinar on Probability, Odds, and Odds Ratios, which you can view free here.

Question:

I just went through the two lectures re: logistic regression and prob/odds/odds ratios. I completely understand (more…)


When Assumptions of ANCOVA are Irrelevant

October 15th, 2012 by

Every once in a while, I work with a client who is stuck between a particular statistical rock and hard place. It happens when they’re trying to run an analysis of covariance (ANCOVA) model because they have a categorical independent variable and a continuous covariate.

Stage 2

The problem arises when a coauthor, committee member, or reviewer insists that ANCOVA is inappropriate in this situation because one of the following ANCOVA assumptions are not met:

1. The independent variable and the covariate are independent of each other.

2. There is no interaction between independent variable and the covariate.

If you look them up in any design of experiments textbook, which is usually where you’ll find information about ANOVA and ANCOVA, you will indeed find these assumptions.  So the critic has nice references.

However, this is a case where it’s important to stop and think about whether the assumptions apply to your situation, and how dealing with the assumption will affect the analysis and the conclusions you can draw. (more…)


Generalized Ordinal Logistic Regression for Ordered Response Variables

October 5th, 2012 by

When the response variable for a regression model is categorical, linear models don’t work.  Logistic regression is one type of model that does, and it’s relatively straightforward for binary responses.

When the response variable is not just categorical, but ordered categories, the model needs to be able to handle the multiple categories, and ideally, account for the ordering.

An easy-to-understand and common example is level of educational attainment.  Depending on the population being studied, some response categories may include:

1 Less than high school
2 Some high school, but no degree
3 Attain GED
4 High school graduate

You can see how there are qualitative differences in these categories that wouldn’t be captured by years of education.  You can also see that (more…)


Factor Analysis: A Short Introduction, Part 2–Rotations

September 24th, 2012 by

by Maike Rahn, PhD

Rotations

An important feature of factor analysis is that the axes of the factors can be rotated within the multidimensional variable space. What does that mean?

Here is, in simple terms, what a factor analysis program does while determining the best fit between the variables and the latent factors: (more…)


Two Recommended Solutions for Missing Data: Multiple Imputation and Maximum Likelihood

September 10th, 2012 by

Two methods for dealing with missing data, vast improvements over traditional approaches, have become available in mainstream statistical software in the last few years.

Both of the methods discussed here require that the data are missing at random–not related to the missing values. If this assumption holds, resulting estimates (i.e., regression coefficients and standard errors) will be unbiased with no loss of power.

The first method is Multiple Imputation (MI). Just like the old-fashioned imputation (more…)