Regression models

When Can Count Data be Considered Continuous?

January 13th, 2012 by

Last month I did a webinar on Poisson and negative binomial models for count data. With a few hundred participants, we ran out of time to get through all the questions, so I’m answering some of them here on the blog.

This set of questions are all related to when it’s appropriate to treat count data as continuous and run the more familiar and simpler linear model.

Q: Do you have any guidelines or rules of thumb as far as how many discrete values an outcome variable can take on before it makes more sense to just treat it as continuous?

The issue usually isn’t a matter of how many values there are.  (more…)


Should You Always Center a Predictor on the Mean?

December 2nd, 2011 by

Centering predictor variables is one of those simple but extremely useful practices that is easily overlooked.

It’s almost too simple.

Centering simply means subtracting a constant from every value of a variable.  What it does is redefine the 0 point for that predictor to be whatever value you subtracted.  It shifts the scale over, but retains the units.

The effect is that the slope between that predictor and the response variable doesn’t (more…)


Interpreting Interactions Between Two Effect-Coded Categorical Predictors

October 21st, 2011 by

I recently received this great question:

Question:

Hi Karen,  ive purchased a lot of your material and read a lot of your pdf documents w.r.t. regression and interaction terms.  Its, now, my general understanding that interaction for two or more categorical variables is best done with effects coding, and interactions  cont v. categorical variables is usually handled via dummy coding.  Further, i may mess this up a little but hopefully you’ll get my point and more importantly my question, i understand that

1)  given a fitted line Y = b0 + b1 x1 + b2 x2 + b3 x1*x2, the interpretation for b3 is the diff of the effect of x1 on Y, when x2 changes one unit, if x1 and x2 are cont.  ( also interpretation can be reversed in terms of x1 and x2). (more…)


How Simple Should a Model Be? The Case of Insignificant Controls, Interactions, and Covariance Structures

September 23rd, 2011 by

Everything should be made as simple as possible, but no simpler” – Albert Einstein*Stage 2

For some reason, I’ve heard this quotation 3 times in the past 3 days.  Maybe I hear it everyday, but only noticed because I’ve been working with a few clients on model selection, and deciding how much to simplify a model.

And when the quotation fits, use it. (That’s the saying, right?)

*For the record, a quick web search indicated this may be a paraphrase, but it still applies.

The quotation is the general goal of model selection.  You really do want the model to be as simple as possible, but still able to answer the research question of interest.

This applies to many areas of model selection.  Here are a few examples: (more…)


How to Combine Complicated Models with Tricky Effects

July 22nd, 2011 by

Need to dummy code in a Cox regression model?

Interpret interactions in a logistic regression?

Add a quadratic term to a multilevel model?

quadratic interaction plotThis is where statistical analysis starts to feel really hard. You’re combining two difficult issues into one.

You’re dealing with both a complicated modeling technique at Stage 3 (survival analysis, logistic regression, multilevel modeling) and tricky effects in the model (dummy coding, interactions, and quadratic terms).

The only way to figure it all out in a situation like that is to break it down into parts.  (more…)


Dummy Code Software Defaults Mess With All of Us

July 15th, 2011 by

In my last blog post, I wrote about a mistake I once made when I didn’t realize the defaults for dummy coding were different in two SPSS procedures (Binary Logistic and GEE).

Ironically, about the same time I wrote it, I was having a conversation with Ann Maria de Mars on Twitter.  She was trying to figure out why her logistic regression model fit results were identical in SAS Proc Logistic and SPSS Binary Logistic, but the coefficients in SAS were half those of SPSS.

It was ironic because I, of course, didn’t recognize it as the same issue and wasn’t much help.

But Ann Maria investigated and discovered that it came down to differences in the defaults for coding categorical predictors in SAS and SPSS that did it.  Her detailed and humorous explanation is here.

Some takeaways for you, the researcher and data analyst:

1. Give yourself a break if you hit a snag.  Even very experienced data analysts, statisticians who understand what they’re doing, get stumped sometimes.  Don’t ever think that performing data analysis is an IQ test.  You’re bringing together many skills and complex tools.

2. Learn thy software.  In my last post, I phrased it “Know thy software”, but this is where you get to know it.  Snags are good opportunities to investigate the details of your software, just like Ann Maria did.  If you can think of it as a challenge to figure out–a puzzle–it can actually be fun.

Make friends with your syntax manuals.

3. Get help when you need it. Statistical software packages *are* complex tools. You don’t have to know everything to use them

Ask colleagues.  Call customer support. Call a stat consultant.  That’s what they’re there for.

4. A great way to check your work is to run your test two different ways.  It’s another reason to be able to use at least two stat software packages.  I’m not suggesting you have to run every analysis twice.  But when a result looks strange, or you want to double-check a specific important model, this can be a good strategy for testing things out.

It may be that your results aren’t telling you what you think they are.

 

[Logistic_Regression_Workshop]