• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • About
    • Our Programs
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Guest Instructors
  • Membership
    • Statistically Speaking Membership Program
    • Login
  • Workshops
    • Online Workshops
    • Login
  • Consulting
    • Statistical Consulting Services
    • Login
  • Free Webinars
  • Contact
  • Login

Generalized Linear Models in R, Part 6: Poisson Regression for Count Variables

by guest 7 Comments

by David Lillis, Ph.D.

In my last couple of articles (Part 4, Part 5), I demonstrated a logistic regression model with binomial errors on binary data in R’s glm() function.

But one of wonderful things about glm() is that it is so flexible. It can run so much more than logistic regression models.

The flexibility, of course, also means that you have to tell it exactly which model you want to run, and how.

In fact, we can use generalized linear models to model count data as well.

In such data the errors may well be distributed non-normally and the variance usually increases with the mean values.

As with binary data, we use the glm() command, but this time we specify a Poisson error distribution and the logarithm as the link function.

The natural log is the default link function for the Poisson error distribution. It works well for count data as it forces all of the predicted values to be positive.

In the following example we fit a generalized linear model to count data using a Poisson error structure. The data set consists of counts of high school students diagnosed with an infectious disease within a period of days from an initial outbreak.

cases <-  
structure(list(Days = c(1L, 2L, 3L, 3L, 4L, 4L, 4L, 6L, 7L, 8L, 
8L, 8L, 8L, 12L, 14L, 15L, 17L, 17L, 17L, 18L, 19L, 19L, 20L, 
23L, 23L, 23L, 24L, 24L, 25L, 26L, 27L, 28L, 29L, 34L, 36L, 36L, 
42L, 42L, 43L, 43L, 44L, 44L, 44L, 44L, 45L, 46L, 48L, 48L, 49L, 
49L, 53L, 53L, 53L, 54L, 55L, 56L, 56L, 58L, 60L, 63L, 65L, 67L, 
67L, 68L, 71L, 71L, 72L, 72L, 72L, 73L, 74L, 74L, 74L, 75L, 75L, 
80L, 81L, 81L, 81L, 81L, 88L, 88L, 90L, 93L, 93L, 94L, 95L, 95L, 
95L, 96L, 96L, 97L, 98L, 100L, 101L, 102L, 103L, 104L, 105L, 
106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L), 
    Students = c(6L, 8L, 12L, 9L, 3L, 3L, 11L, 5L, 7L, 3L, 8L, 
    4L, 6L, 8L, 3L, 6L, 3L, 2L, 2L, 6L, 3L, 7L, 7L, 2L, 2L, 8L, 
    3L, 6L, 5L, 7L, 6L, 4L, 4L, 3L, 3L, 5L, 3L, 3L, 3L, 5L, 3L, 
    5L, 6L, 3L, 3L, 3L, 3L, 2L, 3L, 1L, 3L, 3L, 5L, 4L, 4L, 3L, 
    5L, 4L, 3L, 5L, 3L, 4L, 2L, 3L, 3L, 1L, 3L, 2L, 5L, 4L, 3L, 
    0L, 3L, 3L, 4L, 0L, 3L, 3L, 4L, 0L, 2L, 2L, 1L, 1L, 2L, 0L, 
    2L, 1L, 1L, 0L, 0L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 0L, 0L, 
    0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L)), .Names = c("Days", "Students"
), class = "data.frame", row.names = c(NA, -109L))

attach(cases)

head(cases) 
    Days Students
1    1      6
2    2      8
3    3     12
4    3      9
5    4      3
6    4      3 

The mean and variance are different (actually, the variance is greater). Now we plot the data.

plot(Days, Students, xlab = "DAYS", ylab = "STUDENTS", pch = 16)

image001

Now we fit the glm, specifying the Poisson distribution by including it as the second argument.

model1 <- glm(Students ~ Days, poisson)

summary(model1)

Call:
glm(formula = Students ~ Days, family = poisson)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-2.00482  -0.85719  -0.09331   0.63969   1.73696  

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept)  1.990235   0.083935   23.71   <2e-16 ***
Days        -0.017463   0.001727  -10.11   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 215.36  on 108  degrees of freedom
Residual deviance: 101.17  on 107  degrees of freedom
AIC: 393.11

Number of Fisher Scoring iterations: 5

The negative coefficient for Days indicates that as days increase, the mean number of students with the disease is smaller.

This coefficient is highly significant (p < 2e-16).

We also see that the residual deviance is greater than the degrees of freedom, so that we have over-dispersion. This means that there is extra variance not accounted for by the model or by the error structure.

This is a very important model assumption, so in my next article we will re-fit the model using quasi poisson errors.

****

See our full R Tutorial Series and other blog posts regarding R programming.

About the Author: David Lillis has taught R to many researchers and statisticians. His company, Sigma Statistics and Research Limited, provides both on-line instruction and face-to-face workshops on R, and coding services in R. David holds a doctorate in applied statistics.

Bookmark and Share

Tagged With: count variable, generalized linear models, GLM, Poisson Regression, R

Related Posts

  • Generalized Linear Models in R, Part 7: Checking for Overdispersion in Count Regression
  • Generalized Linear Models (GLMs) in R, Part 4: Options, Link Functions, and Interpretation
  • Generalized Linear Models in R, Part 5: Graphs for Logistic Regression
  • Count Models: Understanding the Log Link Function

Reader Interactions

Comments

  1. Deidre Coghlan says

    September 26, 2019 at 6:22 am

    I am struggling to understand what an appropriate goodness-of-fit test would be if you used Gaussian? Would I need to look at the AIC values for the best fit ? Thanks!

    Reply
  2. Atik says

    March 20, 2019 at 5:41 pm

    model1 <- glm(Students ~ Days, poisson)
    In this comment is Students variable follow IID Poisson random variables??

    Reply
    • Karen Grace-Martin says

      March 21, 2019 at 3:28 pm

      Atik, tecnhically it’s Students|Days is assumed to follow iid Poisson. That assumption would have to be checked.

      Reply
  3. vikas says

    March 8, 2019 at 1:31 am

    sir
    i want to know the code for poisson regression for count data set without using inbuild function i.e glm() function.
    can you help me.
    Thanks

    Reply
  4. Fran says

    January 7, 2016 at 4:09 am

    I would like to know that, too. I’m with Robert, why is it greater?
    Thank’s

    Reply
    • Daz says

      March 26, 2016 at 12:26 pm

      Hi Fran,

      In my R Companion textbook, I found another way to test for overdispersion. If you divide Residual deviance / residual df and the value is above 1.5 (which is generally considered the threshold), you should use a quasi model.

      In this case, it would be 0.945.

      The site for R-Companion (online) is http://rcompanion.org/rcompanion/e_07.html

      Please know that I’m looking at similar models, but using logistic regressions (for which the answer may be slightly different). Best!

      Reply
  5. Robert says

    December 18, 2015 at 10:15 am

    I don’t have understand what you said.
    You said “the residual deviance is greater than the degrees of freedom”, but df are 107 and residual deviance is 101.17. Could you open my mind ? Thank you

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Please note that, due to the large number of comments submitted, any questions on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.

Primary Sidebar

Free Webinars

Effect Size Statistics on Tuesday, Feb 2nd

This Month’s Statistically Speaking Live Training

  • January Member Training: A Gentle Introduction To Random Slopes In Multilevel Models

Upcoming Workshops

  • Logistic Regression for Binary, Ordinal, and Multinomial Outcomes (May 2021)
  • Introduction to Generalized Linear Mixed Models (May 2021)

Read Our Book



Data Analysis with SPSS
(4th Edition)

by Stephen Sweet and
Karen Grace-Martin

Statistical Resources by Topic

  • Fundamental Statistics
  • Effect Size Statistics, Power, and Sample Size Calculations
  • Analysis of Variance and Covariance
  • Linear Regression
  • Complex Surveys & Sampling
  • Count Regression Models
  • Logistic Regression
  • Missing Data
  • Mixed and Multilevel Models
  • Principal Component Analysis and Factor Analysis
  • Structural Equation Modeling
  • Survival Analysis and Event History Analysis
  • Data Analysis Practice and Skills
  • R
  • SPSS
  • Stata

Copyright © 2008–2021 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.