• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • our programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • statistical resources
  • blog
  • about
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • contact
  • login

centering

Interpreting the Intercept in a Regression Model

by Karen Grace-Martin  46 Comments

Interpreting the Intercept in a regression model isn’t always as straightforward as it looks.

Here’s the definition: the intercept (often labeled the constant) is the expected value of Y when all X=0. But that definition isn’t always helpful. So what does it really mean?

Regression with One Predictor X

Start with a very simple regression equation, with one predictor, X.

If X sometimes equals 0, the intercept is simply the expected value of Y at that value. In other words, it’s the mean of Y at one value of X. That’s meaningful.

If X never equals 0, then the intercept has no intrinsic meaning. You literally can’t interpret it. That’s actually fine, though. You still need that intercept to give you unbiased estimates of the slope and to calculate accurate predicted values. So while the intercept has a purpose, it’s not meaningful.

Both these scenarios are common in real data. [Read more…] about Interpreting the Intercept in a Regression Model

Tagged With: centering, Interpreting intercept, interpreting regression coefficients, regression models

Related Posts

  • Interpreting (Even Tricky) Regression Coefficients – A Quiz
  • Interpreting Regression Coefficients in Models other than Ordinary Linear Regression
  • When NOT to Center a Predictor Variable in Regression
  • Centering and Standardizing Predictors

Member Training: Centering

by TAF Support  Leave a Comment

Stage 2Centering variables is common practice in some areas, and rarely seen in others. That being the case, it isn’t always clear what are the reasons for centering variables. CenteringIs it only a matter of preference, or does centering variables help with analysis and interpretation? [Read more…] about Member Training: Centering

Tagged With: ANOVA, centering, linear regression

Related Posts

  • Member Training: The Link Between ANOVA and Regression
  • Member Training: Using Excel to Graph Predicted Values from Regression Models
  • Member Training: Hierarchical Regressions
  • Member Training: Statistical Contrasts

Centering a Covariate to Improve Interpretability

by Karen Grace-Martin  4 Comments

Centering a covariate –a continuous predictor variable–can make regression coefficients much more interpretable. That’s a big advantage, particularly when you have many coefficients to interpret. Or when you’ve included terms that are tricky to interpret, like interactions or quadratic terms.

For example, say you had one categorical predictor with 4 categories and one continuous covariate, plus an interaction between them.

First, you’ll notice that if you center your covariate at the mean, there is [Read more…] about Centering a Covariate to Improve Interpretability

Tagged With: categorical predictor, centering, continuous predictor, Interpreting Interactions, parameter estimates, SPSS GLM

Related Posts

  • Dummy Coding in SPSS GLM–More on Fixed Factors, Covariates, and Reference Groups
  • SPSS GLM or Regression? When to use each
  • SPSS GLM: Choosing Fixed Factors and Covariates
  • Interpreting Regression Coefficients

Member Training: Model Building Approaches

by TAF Support 

There is a bit of art and experience to model building. You need to build a model to answer your research question but how do you build a statistical model when there are no instructions in the box? 

Should you start with all your predictors or look at each one separately? Do you always take out non-significant variables and do you always leave in significant ones?

[Read more…] about Member Training: Model Building Approaches

Tagged With: centering, interaction, lasso, Missing Data, Model Building, Model Fit, Multicollinearity, overfitting, Research Question, sample size, specification error, statistical model, Stepwise

Related Posts

  • What Is Specification Error in Statistical Models?
  • Member Training: The LASSO Regression Model
  • Steps to Take When Your Regression (or Other Statistical) Results Just Look…Wrong
  • Member Training: Centering

Should You Always Center a Predictor on the Mean?

by Karen Grace-Martin  13 Comments

Centering predictor variables is one of those simple but extremely useful practices that is easily overlooked.

It’s almost too simple.

Centering simply means subtracting a constant from every value of a variable.  What it does is redefine the 0 point for that predictor to be whatever value you subtracted.  It shifts the scale over, but retains the units.

The effect is that the slope between that predictor and the response variable doesn’t [Read more…] about Should You Always Center a Predictor on the Mean?

Tagged With: centering, Intercept, linear regression, predictor variable

Related Posts

  • When NOT to Center a Predictor Variable in Regression
  • Centering for Multicollinearity Between Main effects and Quadratic terms
  • Centering and Standardizing Predictors
  • Interpreting the Intercept in a Regression Model

Answers to the Interpreting Regression Coefficients Quiz

by Karen Grace-Martin  5 Comments

Yesterday I gave a little quiz about interpreting regression coefficients.  Today I’m giving you the answers.

If you want to try it yourself before you see the answers, go here.  (It’s truly little, but if you’re like me, you just cannot resist testing yourself).

True or False?

1. When you add an interaction to a regression model, you can still evaluate the main effects of the terms that make up the interaction, just like in ANOVA. [Read more…] about Answers to the Interpreting Regression Coefficients Quiz

Tagged With: centering, dummy coding, Interactions in Regression, Interpreting Intercepts

Related Posts

  • Interpreting the Intercept in a Regression Model
  • Your Questions Answered from the Interpreting Regression Coefficients Webinar
  • Using Marginal Means to Explain an Interaction to a Non-Statistical Audience
  • Interpreting Interactions in Linear Regression: When SPSS and Stata Disagree, Which is Right?

  • Go to page 1
  • Go to page 2
  • Go to Next Page »

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Moderated Mediation, Not Mediated Moderation

Upcoming Workshops

    No Events

Upcoming Free Webinars

TBA

Quick links

Our Programs Statistical Resources Blog/News About Contact Log in

Contact

Upcoming

Free Webinars Membership Trainings Workshops

Privacy Policy

Search

Copyright © 2008–2023 The Analysis Factor, LLC.
All rights reserved.

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT