• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • Our Programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • About
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • Statistical Resources
  • Contact
  • Blog
  • Login

Six terms that mean something different statistically and colloquially

by guest contributer Leave a Comment

by Kim Love and Karen Grace-Martin

Statistics terminology is confusing.

Sometimes different terms are used to mean the same thing, often in different fields of application. Sometimes the same term is used to mean different things. And sometimes very similar terms are used to describe related but distinct statistical concepts.

But the type of terms that causes the most trouble when communicating with non-researchers are those with a different colloquial meaning in English than the technical definition in statistics. This is particularly difficult because the definitions are often similar, if not exact.

Let’s take a look at six of these.

1. Significance

This is, for sure, the big one. You’re probably familiar with the difference between statistical significance, generally indicating a p-value that is below a threshold, and the colloquial meaning of large or important.

A significant other is important. A significant raise is large. A statistically significant difference may be neither. This has been so misunderstood that many statisticians are calling for its demise.

2. Odds

In everyday English, people use the terms Odds and Probability interchangeably.  In statistics, they’re measuring the same general construct – how likely an event is to occur – on different scales. This difference in scales has a huge impact on how you interpret the value.

Odds measure the probability of an outcome relative to the probability that outcome doesn’t occur: p/(1-p). They range from zero to infinity and a value of 1 indicates equal odds.

Probability is just the numerator, p. They range from zero to one and a value of 0 indicates equal probability.

So while you can easily convert back and forth, an odds of .8 means something very different from a probability of .8.

3. Bias

In colloquial English, bias means prejudice.  It’s bad.

Bias isn’t always a good thing in statistics, but it doesn’t have that inherent value judgment.

Bias is a measure of the difference between the value of a population parameter and the theoretical mean value of a statistic that estimates that parameter.

For example, in a simple linear model, the parameter β1 is the slope of the regression line in the population. Since we don’t know its value, we estimate it by calculating b1, the slope of the regression line in a representative sample. Though we know b1 won’t have the exact same value as β1, we expect the average value of  b1, across hundreds of samples we could have taken, will. Any difference between that theoretical average value of b1 and the true population value, is the bias of that estimator.

Statistical bias can occur from using an estimator with a known bias. But since we know what those are, more often it comes from having an unrepresentative sample.

4. Correlation

In statistics, a correlation is a specific measurement. Yes, there are different correlation coefficients, like Spearman, Pearson, and polychoric, but all have a few characteristics:
– They measure the direction and strength of association between two variables
– They range from -1 to 1, with 0 indicating no association

The colloquial definition is much broader. It can mean any connection, match, or co-occurrence between individual events. “The correlation between the machine’s failure and a loose connection in the joint coupling.”

5. Error

Colloquially, an error is a mistake.

In regression models, an error is the difference between the value of an outcome variable for one individual and the value predicted by the model. There’s no mistake involved here. Just variation.

There are also other specific uses of error, such as “standard error,” “sampling error” and “measurement error,” all of which are about variation, not mistakes.

6. Random

The technical definition: “a phenomenon is random if individual outcomes are uncertain, but there is nonetheless a regular distribution of outcomes in a large number of repetitions” – Moore and McCabe

And while this is one usage of random in everyday English, it also often means strange or unexpected. For example “There is a random pineapple in my yard.”

The Pathway: Steps for Staying Out of the Weeds in Any Data Analysis
Get the road map for your data analysis before you begin. Learn how to make any statistical modeling – ANOVA, Linear Regression, Poisson Regression, Multilevel Model – straightforward and more efficient.

Tagged With: bias, confusing statistical terms, Correlation, Error, odds, random, significance, terminology

Related Posts

  • Member Training: Confusing Statistical Terms
  • Why Statistics Terminology is Especially Confusing
  • Confusing Statistical Term #8: Odds
  • Best Practices for Organizing your Data Analysis

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Please note that, due to the large number of comments submitted, any questions on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Introduction to SPSS Software Tutorial

Upcoming Free Webinars

Poisson and Negative Binomial Regression Models for Count Data

Upcoming Workshops

  • Analyzing Count Data: Poisson, Negative Binomial, and Other Essential Models (Jul 2022)
  • Introduction to Generalized Linear Mixed Models (Jul 2022)

Copyright © 2008–2022 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT