• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • Our Programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • About
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • Statistical Resources
  • Contact
  • Blog
  • Login

Logistic Regression Analysis: Understanding Odds and Probability

by Karen Grace-Martin 3 Comments

Updated 11/22/2021

Probability and odds measure the same thing: the likelihood or propensity or possibility of a specific outcome.

People use the terms odds and probability interchangeably in casual usage, but that is unfortunate. It just creates confusion because they are not equivalent.

How Odds and Probability Differ

They measure the same thing on different scales. Imagine how confusing it would be if people used degrees Celsius and degrees Fahrenheit interchangeably. “It’s going to be 35 degrees today” could really make you dress the wrong way.

In measuring the likelihood of any outcome, we need to know two things: how many times something happened and how many times it could have happened, or equivalently, how many times it didn’t.

We call the outcome of interest a success, whether it’s a good outcome or not.

The other outcome is a failure. Each time one of the outcomes could occur is called a trial. Since each trial must end in success or failure, number of successes and number of failures adds up to total number of trials.

Probability is the number of successes compared to the total number of trials.

Odds are the number of successes compared to the number of  failures.

The Example

For example, to predict the likelihood of accidents at a particular intersection, we consider each car that goes through the intersection a trial. Each trial has one of two outcomes: accident or safe passage. If the outcome we’re most interested in modeling is an accident, that is a success (no matter how morbid it sounds).

Probability(success) = number of successes/total number of trials

Odds(success) = number of successes/number of failures

Odds are often written as:

Number of successes:1 failure

which is read as the number of successes for every 1 failure. But often the :1 is dropped.

I see a lot of researchers get stuck when learning logistic regression because they are not used to thinking of likelihood on an odds scale.

Equal odds are 1. 1 success for every 1 failure. 1:1

Equal probabilities are .5. 1 success for every 2 trials.

Odds can range from 0 to infinity. When odds are greater than 1, success is more likely than failure. When odds are less than 1, failure is more likely than success.

Probability can range from 0 to 1. When probability is greater than .5, success is more likely than failure. When probability is less than .5, failure is more likely than success.

The Calculations

In the last month, data from a particular intersection indicate that of the 1,354 cars that drove through it, 72 got into an accident.

72 Successes = Accident
1282 Failures = Safe Passage (1,354 – 72)

Failures = Total – Successes

Pr(Accident) = 72/1354 = .053
Pr(Safe Passage) = 1282/1354 = .947

Odds(Accident) = 72/1282 = .056
Odds(Safety) = 1282/72 = 17.87

Now get out your calculator, because you’ll see how these relate to each other.

Odds(Accident) = Pr(Accident)/Pr(Safety) = .053/.947

Why you Need to Understand Both Odds and Probability

So if we all find probability easier to understand and we’re more used to it, why do we ever need odds?

There are a few reasons.

One is that when probabilities get VERY close to 0 or 1, it’s actually easier to compare odds than it is probabilities.

Think about it. Probabilities of .0001 and .000001 don’t look all that different, intuitively.

But if you change them to odds 1 to 9,999 vs. 1 to 999,999, the difference in the order of magnitude is more intuitive.

Second, in logistic regression the only way to express the constant effect of a continuous predictor is with an odds ratio. Before you can understand or interpret an odds ratios, you need to understand an odds.

In many health-related fields, researchers really want to convert any odds to probabilities, and you’ll often see odds ratios converted to risk ratios. That works fine in a few situations, but there are just some situations where you can’t do it. So it’s best to be able to interpret both.

Understanding Probability, Odds, and Odds Ratios in Logistic Regression
Despite the way the terms are used in common English, odds and probability are not interchangeable. Join us to see how they differ, what each one means, and how to tame that tricky beast: Odds Ratios.

Tagged With: logistic regression, odds, odds ratio, probability

Related Posts

  • Confusing Statistical Term #8: Odds
  • The Difference Between Relative Risk and Odds Ratios
  • Effect Size Statistics in Logistic Regression
  • How to Interpret Odd Ratios when a Categorical Predictor Variable has More than Two Levels

Reader Interactions

Comments

  1. Stefan says

    November 19, 2018 at 6:35 am

    Now I know how to calculate pr(Accident) and Odds(Accident). However, what is the advantage of using odds or probabilities in this example? The difference between 0.053 and 0.056 is rather small. Which “scale” reflects the risk of being involved in an accident more precisely when I enter the intersection ?

    Reply
    • Karen Grace-Martin says

      November 27, 2018 at 3:28 pm

      Hi Stefan,

      Yes, in this example, the difference is small, but that’s not always the case. They’re equally precise for measuring risk. They’re just interpreted differently.

      Reply
  2. Leigh says

    March 20, 2018 at 4:19 am

    Definitely a confusing topic that’s not helped by the words odds and probability being so freely interchanged. This has been a great informative post that easily clears it all up!

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Please note that, due to the large number of comments submitted, any questions on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Analyzing Pre-Post Data

Upcoming Free Webinars

Poisson and Negative Binomial Regression Models for Count Data

Upcoming Workshops

  • Analyzing Count Data: Poisson, Negative Binomial, and Other Essential Models (Jul 2022)
  • Introduction to Generalized Linear Mixed Models (Jul 2022)

Copyright © 2008–2022 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT