Regression models

Same Statistical Models, Different (and Confusing) Output Terms

January 7th, 2020 by

Learning how to analyze data can be frustrating at times. Why do statistical software companies have to add to our confusion?Stage 2

I do not have a good answer to that question. What I will do is show examples. In upcoming blog posts, I will explain what each output means and how they are used in a model.

We will focus on ANOVA and linear regression models using SPSS and Stata software. As you will see, the biggest differences are not across software, but across procedures in the same software.

(more…)


Confusing Statistical Term #8: Odds

December 10th, 2019 by

Odds is confusing in a different way than some of the other terms in this series.

First, it’s a bit of an abstract concept, which I’ll explain below.

But beyond that, it’s confusing because it is used in everyday English as a synonym for probability, but it’s actually a distinct technical term.

I found this incorrect definition recently in a (non-statistics) book: (more…)


What is Multicollinearity? A Visual Description

November 20th, 2019 by

Multicollinearity is one of those terms in statistics that is often defined in one of two ways:

1. Very mathematical terms that make no sense — I mean, what is a linear combination anyway?

2. Completely oversimplified in order to avoid the mathematical terms — it’s a high correlation, right?

So what is it really? In English?

(more…)


Member Training: Practical Advice for Establishing Reliability and Validity

October 30th, 2019 by

How do you know your variables are measuring what you think they are? And how do you know they’re doing it well?

A key part of answering these questions is establishing reliability and validity of the measurements that you use in your research study. But the process of establishing reliability and validity is confusing. There are a dizzying number of choices available to you.

(more…)


R-Squared for Mixed Effects Models

August 21st, 2019 by

When learning about linear models —that is, regression, ANOVA, and similar techniques—we are taught to calculate an R2. The R2 has the following useful properties:

  • The range is limited to [0,1], so we can easily judge how relatively large it is.
  • It is standardized, meaning its value does not depend on the scale of the variables involved in the analysis.
  • The interpretation is pretty clear: It is the proportion of variability in the outcome that can be explained by the independent variables in the model.

The calculation of the R2 is also intuitive, once you understand the concepts of variance and prediction. (more…)


Member Training: Elements of Experimental Design

August 1st, 2019 by

Whether or not you run experiments, there are elements of experimental design that affect how you need to analyze many types of studies.

The most fundamental of these are replication, randomization, and blocking. These key design elements come up in studies under all sorts of names: trials, replicates, multi-level nesting, repeated measures. Any data set that requires mixed or multilevel models has some of these design elements. (more…)