• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • About
    • Our Programs
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Guest Instructors
  • Membership
    • Statistically Speaking Membership Program
    • Login
  • Workshops
    • Online Workshops
    • Login
  • Consulting
    • Statistical Consulting Services
    • Login
  • Free Webinars
  • Contact
  • Login

residuals

One of the Many Advantages to Running Confirmatory Factor Analysis with a Structural Equation Model

by Jeff Meyer 9 Comments

Based on questions I’ve been asked by clients, most analysts prefer using the factor analysis procedures in their general statistical software to run a confirmatory factor analysis.

While this can work in some situations, you’re losing out on some key information you’d get from a structural equation model. This article highlights one of these.

[Read more…] about One of the Many Advantages to Running Confirmatory Factor Analysis with a Structural Equation Model

Tagged With: CFA, Confirmatory Factor Analysis, Cronbach's alpha, eigenvalue, Factor Analysis, factor loadings, latent construct, Latent Growth Curve Model, latent variable, Model Fit, residuals, SEM, Structural Equation Modeling

Related Posts

  • First Steps in Structural Equation Modeling: Confirmatory Factor Analysis
  • Member Training: Reporting Structural Equation Modeling Results
  • Three Myths and Truths About Model Fit in Confirmatory Factor Analysis
  • The Four Models You Meet in Structural Equation Modeling

Same Statistical Models, Different (and Confusing) Output Terms

by Jeff Meyer Leave a Comment

Learning how to analyze data can be frustrating at times. Why do statistical software companies have to add to our confusion?

I do not have a good answer to that question. What I will do is show examples. In upcoming blog posts, I will explain what each output means and how they are used in a model.

We will focus on ANOVA and linear regression models using SPSS and Stata software. As you will see, the biggest differences are not across software, but across procedures in the same software.

[Read more…] about Same Statistical Models, Different (and Confusing) Output Terms

Tagged With: ANOVA, between groups, categorical predictor, linear regression, oneway, residuals, software, SPSS, SPSS output, Stata, Stata output, Statistical Software, within groups

Related Posts

  • Statistical Software Access From Home
  • Member Training: What’s the Best Statistical Package for You?
  • Ten Ways Learning a Statistical Software Package is Like Learning a New Language
  • SPSS, SAS, R, Stata, JMP? Choosing a Statistical Software Package or Two

Member Training: The Anatomy of an ANOVA Table

by Jeff Meyer

Our analysis of linear regression focuses on parameter estimates, z-scores, p-values and confidence levels. Rarely in regression do we see a discussion of the estimates and F statistics given in the ANOVA table above the coefficients and p-values.

And yet, they tell you a lot about your model and your data. Understanding the parts of the table and what they tell you is important for anyone running any regression or ANOVA model.

[Read more…] about Member Training: The Anatomy of an ANOVA Table

Tagged With: ANOVA, estimate, estimation, F test, R-squared, residuals, sum of squares, tables, types

Related Posts

  • April Member Training: Statistical Contrasts
  • Same Statistical Models, Different (and Confusing) Output Terms
  • Member Training: Elements of Experimental Design
  • Member Training: The Multi-Faceted World of Residuals

Member Training: The Multi-Faceted World of Residuals

by Karen Grace-Martin 1 Comment

Most analysts’ primary focus is to check the distributional assumptions with regards to residuals. They must be independent and identically distributed (i.i.d.) with a mean of zero and constant variance.

Residuals can also give us insight into the quality of our models.

In this webinar, we’ll review and compare what residuals are in linear regression, ANOVA, and generalized linear models. Jeff will cover:

  • Which residuals — standardized, studentized, Pearson, deviance, etc. — we use and why
  • How to determine if distributional assumptions have been met
  • How to use graphs to discover issues like non-linearity, omitted variables, and heteroskedasticity

Knowing how to piece this information together will improve your statistical modeling skills.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

[Read more…] about Member Training: The Multi-Faceted World of Residuals

Tagged With: ANOVA, deviance, generalized linear models, linear regression, Pearson Correlation, residuals, standardized, studentized

Related Posts

  • Member Training: Using Excel to Graph Predicted Values from Regression Models
  • Checking Assumptions in ANOVA and Linear Regression Models: The Distribution of Dependent Variables
  • April Member Training: Statistical Contrasts
  • Same Statistical Models, Different (and Confusing) Output Terms

Incorporating Graphs in Regression Diagnostics with Stata

by Jeff Meyer Leave a Comment

by Jeff Meyer

You put a lot of work into preparing and cleaning your data. Running the model is the moment of excitement.

You look at your tables and interpret the results. But first you remember that one or more variables had a few outliers. Did these outliers impact your results? [Read more…] about Incorporating Graphs in Regression Diagnostics with Stata

Tagged With: coefficients, cook's distance, influence, leverage, linear model, observations, outcome variable, outliers, post-estimation, Regression, residuals, studentized

Related Posts

  • Linear Regression in Stata: Missing Data and the Stories it Might Tell
  • Linear Models in R: Improving Our Regression Model
  • Same Statistical Models, Different (and Confusing) Output Terms
  • A Visual Description of Multicollinearity

Linear Models in R: Improving Our Regression Model

by guest Leave a Comment

by David Lillis, Ph.D.

Last time we created two variables and used the lm() command to perform a least squares regression on them, and diagnosing our regression using the plot() command.

Just as we did last time, we perform the regression using lm(). This time we store it as an object M. [Read more…] about Linear Models in R: Improving Our Regression Model

Tagged With: fitting, leverage, lines, lm, plotting, Q-Q plot, R, Regression, residuals

Related Posts

  • Linear Models in R: Diagnosing Our Regression Model
  • Linear Models in R: Plotting Regression Lines
  • R Is Not So Hard! A Tutorial, Part 5: Fitting an Exponential Model
  • Incorporating Graphs in Regression Diagnostics with Stata

  • Go to page 1
  • Go to page 2
  • Go to Next Page »

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • April Member Training: Statistical Contrasts

Upcoming Workshops

  • Logistic Regression for Binary, Ordinal, and Multinomial Outcomes (May 2021)
  • Introduction to Generalized Linear Mixed Models (May 2021)

Read Our Book



Data Analysis with SPSS
(4th Edition)

by Stephen Sweet and
Karen Grace-Martin

Statistical Resources by Topic

  • Fundamental Statistics
  • Effect Size Statistics, Power, and Sample Size Calculations
  • Analysis of Variance and Covariance
  • Linear Regression
  • Complex Surveys & Sampling
  • Count Regression Models
  • Logistic Regression
  • Missing Data
  • Mixed and Multilevel Models
  • Principal Component Analysis and Factor Analysis
  • Structural Equation Modeling
  • Survival Analysis and Event History Analysis
  • Data Analysis Practice and Skills
  • R
  • SPSS
  • Stata

Copyright © 2008–2021 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.

SAVE & ACCEPT