Interpreting the Intercept in a Regression Model

by Karen


The intercept (often labeled the constant) is the expected mean value of Y when all X=0.

Start with a regression equation with one predictor, X.

If X sometimes = 0, the intercept is simply the expected mean value of Y at that value.

If X never = 0, then the intercept has no intrinsic meaning. In scientific research, the purpose of a regression model is to understand the relationship between predictors and the response.  If so, and if X never = 0, there is no interest in the intercept. It doesn’t tell you anything about the relationship between X and Y.

You do need it to calculate predicted values, though.  In market research, there is usually more interest in prediction, so the intercept is more important here.

When X never =0 is one reason for centering X. If you rescale X so that the mean or some other meaningful value = 0 (just subtract a constant from X), now the intercept has a meaning. It’s the mean value of Y at the chosen value of X.

If you have dummy variables in  your model, though, the intercept has more meaning.  Dummy coded variables have values of 0 for the reference group and 1 for the comparison group. Since the intercept is the expected mean value when X=0, it is the mean value only for the reference group (when all other X=0).

This is especially important to consider when the dummy coded predictor is included in an interaction term.  Say for example that X1 is a continuous variable centered at its mean.  X2 is a dummy coded predictor, and the model contains an interaction term for X1*X2.

The B value for the intercept is the mean value of X1 only for the reference group.  The mean value of X1 for the comparison group is the intercept plus the coefficient for X2.

Bookmark and Share

tn_ircLearn more about the ins and outs of interpreting regression coefficients in our new On Demand workshop: Interpreting (Even Tricky) Regression Coeffcients.

{ 25 comments… read them below or add one }

Leave a Comment

Please note that Karen receives hundreds of comments at The Analysis Factor website each week. Since Karen is also busy teaching workshops, consulting with clients, and running a membership program, she seldom has time to respond to these comments anymore. If you have a question to which you need a timely response, please check out our low-cost monthly membership program, or sign-up for a quick question consultation.

{ 1 trackback }

Previous post:

Next post: