• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • About
    • Our Programs
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Guest Instructors
  • Membership
    • Statistically Speaking Membership Program
    • Login
  • Workshops
    • Online Workshops
    • Login
  • Consulting
    • Statistical Consulting Services
    • Login
  • Free Webinars
  • Contact
  • Login

beta

Member Training: Making Sense of Statistical Distributions

by guest Leave a Comment

Many who work with statistics are already functionally familiar with the normal distribution, and maybe even the binomial distribution.

These common distributions are helpful in many applications, but what happens when they just don’t work?

This webinar will cover a number of statistical distributions, including the:

  • Poisson and negative binomial distributions (especially useful for count data)
  • Multinomial distribution (for responses with more than two categories)
  • Beta distribution (for continuous percentages)
  • Gamma distribution (for right-skewed continuous data)
  • Bernoulli and binomial distributions (for probabilities and proportions)
  • And more!

We’ll also explore the relationships among statistical distributions, including those you may already use, like the normal, t, chi-squared, and F distributions.


Note: This training is an exclusive benefit to members of the Statistically Speaking Membership Program and part of the Stat’s Amore Trainings Series. Each Stat’s Amore Training is approximately 90 minutes long.

[Read more…] about Member Training: Making Sense of Statistical Distributions

Tagged With: Bernoulli, beta, binomial, distributions, gamma, Multinomial, negative binomial, poisson, statistical distributions

Related Posts

  • Member Training: Logistic Regression for Count and Proportion Data
  • Poisson or Negative Binomial? Using Count Model Diagnostics to Select a Model
  • Analyzing Zero-Truncated Count Data: Length of Stay in the ICU for Flu Victims
  • Overdispersion in Count Models: Fit the Model to the Data, Don’t Fit the Data to the Model

How to Get Standardized Regression Coefficients When Your Software Doesn’t Want To Give Them To You

by Karen Grace-Martin 28 Comments

Standardized regression coefficients remove the unit of measurement of predictor and outcome variables.  They are sometimes called betas, but I don’t like to use that term because there are too many other, and too many related, concepts that are also called beta.

There are many good reasons to report them:

  • They serve as standardized effect size statistics.
  • They allow you to compare the relative effects of predictors measured on different scales.
  • They make journal editors and committee members happy in fields where they are commonly reported. [Read more…] about How to Get Standardized Regression Coefficients When Your Software Doesn’t Want To Give Them To You

Tagged With: beta, invariance testing, logistic regression, measurement equivalence, standardized regression coefficients

Related Posts

  • How to Combine Complicated Models with Tricky Effects
  • Interpreting Regression Coefficients in Models other than Ordinary Linear Regression
  • Linear Regression for an Outcome Variable with Boundaries
  • Member Training: Using Excel to Graph Predicted Values from Regression Models

Confusing Statistical Terms #2: Alpha and Beta

by Karen Grace-Martin 27 Comments

Oh so many years ago I had my first insight into just how ridiculously confusing all the statistical terminology can be for novices.

I was TAing a two-semester applied statistics class for graduate students in biology.  It started with basic hypothesis testing and went on through to multiple regression.

It was a cross-listed class, meaning there were a handful of courageous (or masochistic) undergrads in the class, and they were having trouble keeping [Read more…] about Confusing Statistical Terms #2: Alpha and Beta

Tagged With: alpha, beta, Intercept, regression coefficients, type II error

Related Posts

  • Series on Confusing Statistical Terms
  • 5 Ways to Increase Power in a Study
  • Confusing Statistical Term #9: Multiple Regression Model and Multivariate Regression Model
  • How Big of a Sample Size do you need for Factor Analysis?

Series on Confusing Statistical Terms

by Karen Grace-Martin 5 Comments

One of the biggest challenges in learning statistics and data analysis is learning the lingo.  It doesn’t help that half of the notation is in Greek (literally).

The terminology in statistics is particularly difficult to learn because often the same word or symbol is used to mean completely different concepts.

I know it feels that way, but it really isn’t a master plot by statisticians to keep researchers feeling ignorant.

Really.

It’s just that a lot of the methods in statistics were created by statisticians working in different fields–economics, psychology, and yes, straight statistics.  Certain fields often have specific types of data that come up a lot and that require specific statistical methodologies to analyze.

Economics needs time series, psychology needs factor analysis.  Et cetera, et cetera.

But separate fields developing statistics in isolation has some ugly effects.

Sometimes different fields develop the same technique, but use different names or notation.

Other times different fields use the same name or notation on different techniques they developed.

And of course, there are those terms with slightly different names, often used in similar contexts, but with different meanings. These are never used interchangeably, but they’re easy to confuse if you don’t use this stuff every day.

And sometimes, there are different terms for subtly different concepts, but people use them interchangeably.  (I am guilty of this myself).  It’s not a big deal if you understand those subtle differences.  But if you don’t, it’s a mess.

And it’s not just fields–it’s software, too.

SPSS uses different names for the exact same thing in different procedures.  In GLM, a continuous independent variable is called a Covariate.  In Regression, it’s called an Independent Variable.

Likewise, SAS has a Repeated statement in its GLM, Genmod, and Mixed procedures.  They all get at the same concept there (repeated measures), but they deal with it in drastically different ways.

So once the fields come together and realize they’re all doing the same thing, people in different fields or using different software procedures, are already used to using their terminology.  So we’re stuck with different versions of the same word or method.

So anyway, I am beginning a series of blog posts to help clear this up.  Hopefully it will be a good reference you can come back to when you get stuck.

We’ve expanded on this list with a member training, if you’re interested.

If you have good examples, please post them in the comments.  I’ll do my best to clear things up.

Confusing Statistical Term #1: Independent Variable

Confusing Statistical Terms #2: Alpha and Beta

Confusing Statistical Term #3: Levels

Confusing Statistical Terms #4: Hierarchical Regression vs. Hierarchical Model

Confusing Statistical Term #5: Covariate

Confusing Statistical Term #6: Factor

Confusing Statistical Term #7: GLM

Confusing Statistical Term #8: Odds

Confusing Statistical Term #9: Multiple Regression Model and Multivariate Regression Model

Tagged With: alpha, beta, Covariate, factor, GLM, independent variable, levels, Multiple Regression, multivariate, odds, Regression, SPSS GLM, Statistical Terms

Related Posts

  • Member Training: Confusing Statistical Terms
  • Confusing Statistical Terms #2: Alpha and Beta
  • Confusing Statistical Terms #1: The Many Names of Independent Variables
  • Confusing Statistical Term #9: Multiple Regression Model and Multivariate Regression Model

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • February Member Training: Choosing the Best Statistical Analysis

Upcoming Workshops

  • Logistic Regression for Binary, Ordinal, and Multinomial Outcomes (May 2021)
  • Introduction to Generalized Linear Mixed Models (May 2021)

Read Our Book



Data Analysis with SPSS
(4th Edition)

by Stephen Sweet and
Karen Grace-Martin

Statistical Resources by Topic

  • Fundamental Statistics
  • Effect Size Statistics, Power, and Sample Size Calculations
  • Analysis of Variance and Covariance
  • Linear Regression
  • Complex Surveys & Sampling
  • Count Regression Models
  • Logistic Regression
  • Missing Data
  • Mixed and Multilevel Models
  • Principal Component Analysis and Factor Analysis
  • Structural Equation Modeling
  • Survival Analysis and Event History Analysis
  • Data Analysis Practice and Skills
  • R
  • SPSS
  • Stata

Copyright © 2008–2021 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.

SAVE & ACCEPT