• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
The Analysis Factor

The Analysis Factor

Statistical Consulting, Resources, and Statistics Workshops for Researchers

  • Home
  • Our Programs
    • Membership
    • Online Workshops
    • Free Webinars
    • Consulting Services
  • About
    • Our Team
    • Our Core Values
    • Our Privacy Policy
    • Employment
    • Collaborate with Us
  • Statistical Resources
  • Contact
  • Blog
  • Login

What Is Specification Error in Statistical Models?

by Karen Grace-Martin Leave a Comment

When we think about model assumptions, we tend to focus on assumptions like independence, normality, and constant variance. The other big assumption, which is harder to see or test, is that there is no specification error. The assumption of linearity is part of this, but it’s actually a bigger assumption.

What is this assumption of no specification error?

The basic idea is that when you choose a final model, you want to choose one that accurately represents the real relationships among variables.

There are a few common ways of specifying a linear model inaccurately.

Specifying a linear relationship between X & Y when the relationship isn’t linear

curvilinear regressionIt’s often the case that the relationship between a predictor X and Y isn’t a straight line. Let’s use a common one as an example: a curvilinear relationship.

Specifying a line when the relationship is really a curve will result in less-than-optimal model fit, non-independent residuals, and inaccurate predicted values.

One way to check for a curvilinear relationship is with bivariate graphing before you get started modeling. Many times (though not always) the fix is simple: a log transformation of X or an addition of a quadratic (X squared) term.

Other ways to find it include residual graphs and, if they make theoretical sense, adding transformations of X to the model and assessing model fit.

Another example is an interaction term.

If the effect of a variable X is moderated by another predictor, it means X doesn’t have a simple linear relationship with Y. X’s relationship with Y depends on the value of a third variable–the moderator.

Including that interaction in the model will accurately represent the real relationship between X and Y. Failing to include it means mis-specification of X’s real effect.

Leaving out important predictors

The basic idea here is that if you’ve left out some important predictor or covariate, your model isn’t an accurate representation.

On the other hand, it’s impossible to realistically include every predictor that predicts or explains the outcome, as much as you may want to.

(And there are certainly models whose job is not to represent all predictors of an outcome. Rather it’s to test the relationship with specific predictors).

So you have to be comfortable with some level of specification error here and focus on minimizing it.

One of the most problematic mistakes here is to leave out an important confounding variable. Of course, you’re limited to the variables in your data set. So this is something to think about long before you’ve collected data.

Including unimportant predictors in the model

Just to make sure this doesn’t get too easy, another cause of model mis-specification is including predictors that are unrelated to the outcome variable.

So we can’t avoid missing an important predictor by throwing every possible predictor we have into the model.

There are many ways to build a model. The goal of all of them is to find the best model. The best model is one that includes all the important predictors in the right form, but not any unimportant ones.

 

Consequences of specification error

Specification error often, but not always, causes other assumptions to fail.

For example, sometimes you can solve non-normality of the residuals by adding a missed covariate or interaction term.

So the first step in solving problems with other assumptions is usually not to jump to transformations or some other complicated modeling, but to reassess the predictors you’ve put into the model.

The Pathway: Steps for Staying Out of the Weeds in Any Data Analysis
Get the road map for your data analysis before you begin. Learn how to make any statistical modeling – ANOVA, Linear Regression, Poisson Regression, Multilevel Model – straightforward and more efficient.

Tagged With: curvilinear effect, interaction, Model Building, predictors, specification error, statistical model, transformation

Related Posts

  • Member Training: Model Building Approaches
  • Differences in Model Building Between Explanatory and Predictive Models
  • Spotlight Analysis for Interpreting Interactions
  • Five Common Relationships Among Three Variables in a Statistical Model

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Please note that, due to the large number of comments submitted, any questions on problems related to a personal study/project will not be answered. We suggest joining Statistically Speaking, where you have access to a private forum and more resources 24/7.

Primary Sidebar

This Month’s Statistically Speaking Live Training

  • Member Training: Assumptions of Linear Models

Upcoming Free Webinars

The Pathway: Steps for Staying Out of the Weeds in any Data Analysis

Upcoming Workshops

  • Analyzing Count Data: Poisson, Negative Binomial, and Other Essential Models (Jul 2022)
  • Introduction to Generalized Linear Mixed Models (Jul 2022)

Copyright © 2008–2022 The Analysis Factor, LLC. All rights reserved.
877-272-8096   Contact Us

The Analysis Factor uses cookies to ensure that we give you the best experience of our website. If you continue we assume that you consent to receive cookies on all websites from The Analysis Factor.
Continue Privacy Policy
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT