After you are done with the odyssey of exploratory factor analysis (aka a reliable and valid instrument)…you may find yourself at the beginning of a journey rather than the ending.
The process of performing exploratory factor analysis usually seeks to answer whether a given set of items form a coherent factor (or often several factors). If you decide on the number and type of factors, the next step is to evaluate how well those factors are measured.
(more…)

Many times in science we are intrigued to measure an underlying characteristic that cannot be observed or measured directly. This measure is hypothesized to exist to explain variables, such as behavior, that can be observed.
The measurable variables are called manifest variables. The unmeasurable are called latent variables.
Latent variables are often called factors, especially in the context of factor analysis.
(more…)
We mentioned before that we use Confirmatory Factor Analysis to evaluate whether the relationships among the variables are adequately represented by the hypothesized factor structure. The factor structure (relationships between factors and variables) can be based on theoretical justification or previous findings.
Once we estimate the relationship indicators of those factors, the next task is to determine the extent to which these structure specifications are consistent with the data. The main question we are trying to answer is:
(more…)
Today, I would like to briefly describe four misconceptions that I feel are commonly perceived by novice researchers in Exploratory Factor Analysis:
Misconception 1: The choice between component and common factor extraction procedures is not so important.
In Principal Component Analysis, a set of variables is transformed into a smaller set of linear composites known as components. This method of analysis is essentially a method for data reduction.
(more…)

We get many questions from clients who use the terms mediator and moderator interchangeably.
They are easy to confuse, yet mediation and moderation are two distinct terms that require distinct statistical approaches.
The key difference between the concepts can be compared to a case where a moderator lets you know when an association will occur while a mediator will inform you how or why it occurs.
(more…)
We’ve looked at the interaction effect between two categorical variables. Now let’s make things a little more interesting, shall we?
What if our predictors of interest, say, are a categorical and a continuous variable? How do we interpret the interaction between the two? (more…)